RESUMO
The existence of cancer stem cells is debatable in numerous solid tumors, yet in leukemia, there is compelling evidence of this cell population. Leukemic stem cells (LSCs) are altered cells in which accumulating genetic and/or epigenetic alterations occur, resulting in the transition between the normal, preleukemic, and leukemic status. These cells do not follow the normal differentiation program; they are arrested in a primitive state but with high proliferation potential, generating undifferentiated blast accumulation and a lack of a mature cell population. The identification of LSCs might guide stem cell biology research and provide key points of distinction between these cells and their normal counterparts. The identification and characterization of the main features of LSCs can be useful as tools for diagnosis and treatment. In this context, the aim of the present review was to connect immunophenotype data in the main types of leukemia to further guide technical improvements.
Assuntos
Imunofenotipagem/tendências , Leucemia/diagnóstico , Leucemia/imunologia , Células-Tronco Neoplásicas/imunologia , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/uso terapêutico , Diferenciação Celular/imunologia , Citometria de Fluxo , Humanos , Leucemia/patologia , Leucemia/terapia , Células-Tronco Neoplásicas/patologia , PrognósticoRESUMO
Previous studies in our laboratory showed that N-acetylcysteine supplementation or aerobic training reduced oxidative stress and the progression of diabetic nephropathy in rats. The P2X(7 receptor is up-regulated in pathological conditions, such as diabetes mellitus. This up-regulation is related to oxidative stress and induces tissue apoptosis or necrosis. The aim of the present study is to assess the role of P2X(7) receptor in the kidneys of diabetic rats submitted to aerobic training or N-acetylcysteine supplementation. Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, i.v.) and the training was done on a treadmill; N-acetylcysteine was given in the drinking water (600 mg/L). By confocal microscopy, as compared to control, the kidneys of diabetic rats showed increased P2 × 7 receptor expression and a higher activation in response to 2'(3')-O-(4-benzoylbenzoyl) adenosine5'-triphosphate (specific agonist) and adenosine triphosphate (nonspecific agonist) (all p<0.05). All these alterations were reduced in diabetic rats treated with N-acetylcysteine, exercise or both. We also observed measured proteinuria and albuminuria (early marker of diabetic nephropathy) in DM groups. Lipoperoxidation was strongly correlated with P2X(7) receptor expression, which was also correlated to NOâ¢, thus associating this receptor to oxidative stress and kidney lesion. We suggest that P2X(7) receptor inhibition associated with the maintenance of redox homeostasis could be useful as coadjuvant treatment to delay the progression of diabetic nephropathy.
Assuntos
Acetilcisteína/farmacologia , Albuminúria/prevenção & controle , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/terapia , Nefropatias Diabéticas/prevenção & controle , Receptores Purinérgicos P2X7/genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Administração Oral , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Terapia por Exercício , Expressão Gênica , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo , Condicionamento Físico Animal , Agonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2X7/metabolismo , EstreptozocinaRESUMO
There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(â¢)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(â¢) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(â¢)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(â¢) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(â¢)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(â¢)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(â¢) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling.
Assuntos
Células da Medula Óssea/metabolismo , Linhagem da Célula , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Óxido Nítrico/metabolismo , Animais , Proliferação de Células/fisiologia , Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/citologia , Camundongos , Oxirredução , Espécies Reativas de Oxigênio/metabolismoRESUMO
Myeloid differentiation is a complex process whereby mature granulocytes or monocytes/macrophages are derived from a common myeloid progenitor through the coordinated action of hematopoietic cytokines. In this study, we explored the role of the Ca(2+)i signaling transduction pathway in the commitment of hematopoietic stem/progenitor cells to either the monocytic or granulocytic lineage in response to macrophage colony-stimulating factor (M-CSF) and granulocyte colony-stimulating factor (G-CSF). M-CSF and G-CSF induce cell expansion and monocyte or granulocyte differentiation, respectively, without affecting the percentage of hematopoietic progenitor cells. Colony-forming units (CFUs) and flow cytometry demonstrated the involvement of phospholipase Cγ (PLCγ) and protein kinase C (PKC) in monocyte/granulocyte commitment. In addition, using flow cytometry and RNA interference, we identified PLCγ2 as the PLCγ isoform that participates in this cell expansion and differentiation. Differences in signaling elicited by M-CSF and G-CSF were observed. The M-CSF-related effects were associated with the activation of ERK1/2 and nuclear factor of activated T-cells (NFAT); the inhibition of both molecules reduced the number of colonies in a CFU assay. In contrast, using flow cytometry and confocal evaluation, we demonstrated that G-CSF activated Jak-1 and STAT-3. Additionally, the effects induced by G-CSF were also related with the participation of Ca(2+) calmodulin kinase II and the transcription factor PU.1. STAT-3 activation and the increase of PU.1 expression were sensitive to PLC inhibition by U73122. These data show that PLCγ2 and PKC are important upstream signals that regulate myelopoiesis through cytokines, and differences in M-CSF and G-CSF downstream signaling were identified.
Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Animais , Sinalização do Cálcio , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Estrenos/farmacologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/genética , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirrolidinonas/farmacologia , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Transativadores/metabolismoRESUMO
In recent years, the antitumoral activity of antimicrobial peptides (AMPs) has been the goal of many research studies. Among AMPs, gomesin (Gm) displays antitumor activity by unknown mechanisms. Herein, we studied the cytotoxicity of Gm in the Chinese hamster ovary (CHO) cell line. Furthermore, we investigated the temporal ordering of organelle changes and the dynamics of Ca(2+) signaling during Gm-induced cell death. The results indicated that Gm binds to the plasma membrane and rapidly translocates into the cytoplasm. Moreover, 20 µM Gm increases the cytosolic Ca(2+) and induces membrane permeabilization after 30 min of treatment. Direct Ca(2+) measurements in CHO cells transfected with the genetically encoded D1-cameleon to the endoplasmic reticulum (ER) revealed that Gm induces ER Ca(2+) depletion, which in turn resulted in oscillatory mitochondrial Ca(2+) signal, as measured in cells expressing the genetically encoded probe to the mitochondrial matrix (mit)Pericam. This leads to mitochondria disruption, loss of mitochondrial membrane potential and increased reactive oxygen species prior to membrane permeabilization. Gm-induced membrane permeabilization by a Ca(2+)-dependent pathway involving Gm translocation into the cell, ER Ca(2+) depletion and disruption, mitochondrial Ca(2+) overload and oxidative stress.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Animais , Células CHO , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
In this study we investigated the mechanism underlying the spasmolytic action of ent-7α-acetoxytrachyloban-18-oic acid (trachylobane-360) and ent-7α-hydroxytrachyloban-18-oic acid (trachylobane-318), diterpenes obtained from Xylopia langsdorfiana, on guinea pig ileum. Both compounds inhibited histamine-induced cumulative contractions (slope=3.5±0.9 and 4.4±0.7) that suggests a noncompetitive antagonism to histaminergic receptors. CaCl(2)-induced contractions were nonparallelly and concentration-dependently reduced by both diterpenes, indicating blockade of calcium influx through voltage-dependent calcium channels (Ca(v)). The Ca(v) participation was confirmed since both trachylobanes equipotently relaxed ileum pre-contracted with S-(-)-Bay K8644 (EC(50)=3.5±0.7×10-(5) and 1.1±0.2×10-(5)M) and KCl (EC(50)=5.5±0.3×10-(5) and 1.4±0.2×10-(5)M). K(+) channels participation was confirmed since diterpene-induced relaxation curves were significantly shifted to right in the presence of 5mM tetraethylammonium (TEA(+)) (EC(50)=0.5±0.04×10-(4) and 2.0±0.5×10-(5)M). ATP-sensitive K(+) channel (K(ATP)), voltage activated K(+) channels (K(V)), small conductance calcium-activated K(+) channels (SK(Ca)) or big conductance calcium-activated K(+) channels (BK(Ca)) did not seem to participate of trachylobane-360 spasmolytic action. However trachylobane-318 modulated positively K(ATP), K(V) and SK(Ca) (EC(50)=1.1±0.3×10-(5), 0.7±0.2×10-(5) and 0.7±0.2×10-(5)M), but not BK(Ca). A fluorescence analysis technique confirmed the decrease of cytosolic calcium concentration ([Ca(2+)](c)) induced by both trachylobanes in ileal myocytes. In conclusion, trachylobane-360 and trachylobane-318 induced spasmolytic activity by K(+) channel positive modulation and Ca(2+) channel blockade, which results in [Ca(2+)](c) reduction at cellular level leading to smooth muscle relaxation.
Assuntos
Canais de Cálcio/efeitos dos fármacos , Diterpenos/farmacologia , Íleo/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Xylopia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/antagonistas & inibidores , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Cálcio/metabolismo , Cloreto de Cálcio/antagonistas & inibidores , Cloreto de Cálcio/farmacologia , Células Cultivadas , Citosol/metabolismo , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Cobaias , Histamina/farmacologia , Íleo/metabolismo , Íleo/fisiologia , Técnicas In Vitro , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Parassimpatolíticos/farmacologiaRESUMO
Previous studies have shown that heparin induces vascular relaxation via integrin-dependent nitric oxide (NO)-mediated activation of the muscarinic receptor. The aim of this study was to identify the structural features of heparin that are necessary for the induction of vasodilatation. To address this issue, we tested heparin from various sources for their vasodilatation activities in the rat aorta ring. Structural and chemical characteristics of heparin, such as its molecular weight and substitution pattern, did not show a direct correlation with the vasodilation activity. Principal component analysis (PCA) of circular dichroism (CD), (1)H-nuclear magnetic resonance (NMR) and vasodilation activity measurements confirmed that there is no direct relationship between the physico-chemical nature and vasodilation activity of the tested heparin samples. To further understand these observations, unfractionated heparin (UFH) from bovine intestinal mucosa, which showed the highest relaxation effect, was chemically modified. Interestingly, non-specific O- and N-desulfation of heparin reduced its anticoagulant, antithrombotic, and antihemostatic activities, but had no effect on its ability to induce vasodilation. On the other hand, chemical reduction of the carboxyl groups abolished heparin-induced vasodilation and reduced the affinity of heparin toward the extracellular matrix (ECM). In addition, dextran and dextran sulfate (linear non-sulfated and highly sulfated polysaccharides, respectively) did not induce significant relaxation, showing that the vasodilation activity of polysaccharides is neither charge-dependent nor backbone unspecific. Our results suggest that desulfated heparin molecules may be used as vasoactive agents due to their low side effects.
Assuntos
Heparina/química , Vasodilatadores/química , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Bovinos , Dicroísmo Circular , Heparina/farmacologia , Técnicas In Vitro , Mucosa Intestinal/química , Espectroscopia de Ressonância Magnética , Masculino , Peso Molecular , Análise Multivariada , Análise de Componente Principal , Ratos , Ratos Wistar , Espectrofotometria Ultravioleta , Vasodilatadores/farmacologiaRESUMO
Even though the involvement of intracellular Ca(2+) Ca(i)(2+) in hematopoiesis has been previously demonstrated, the relationship between Ca(i)(2+) signaling and cytokine-induced intracellular pathways remains poorly understood. Herein, the molecular mechanisms integrating Ca(2+) signaling with the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in primary murine and human hematopoietic stem/progenitor cells stimulated by IL-3 and GM-CSF were studied. Our results demonstrated that IL-3 and GM-CSF stimulation induced increased inositol 1,4,5-trisphosphate (IP(3) ) levels and Ca(i)(2+) release in murine and human hematopoietic stem/progenitor cells. In addition, Ca(i)(2+) signaling inhibitors, such as inositol 1,4,5-trisphosphate receptor antagonist (2-APB), PKC inhibitor (GF109203), and CaMKII inhibitor (KN-62), blocked phosphorylation of MEK activated by IL-3 and GM-CSF, suggesting the participation of Ca(2+) -dependent kinases in MEK activation. In addition, we identify phospholipase Cγ2 (PLCγ2) as a PLCγ responsible for the induction of Ca(2+) release by IL-3 and GM-CSF in hematopoietic stem/progenitor cells. Furthermore, the PLCγ inhibitor U73122 significantly reduced the numbers of granulocyte-macrophage colony-forming units after cytokine stimulation. Similar results were obtained in both murine and human hematopoietic stem/progenitor cells. Taken together, these data indicate a role for PLCγ2 and Ca(2+) signaling through the modulation of MEK in both murine and human hematopoietic stem/progenitor cells.
Assuntos
Sinalização do Cálcio , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células-Tronco Hematopoéticas/enzimologia , Interleucina-3/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fosfolipase C gama/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Separação Celular , Células Cultivadas , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfolipase C gama/antagonistas & inibidores , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Recombinantes , Fatores de Tempo , Adulto JovemRESUMO
Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system.
Assuntos
Angiotensina II/metabolismo , Sinalização do Cálcio/fisiologia , Peptidil Dipeptidase A/metabolismo , Análise de Variância , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Cricetinae , Cricetulus , Citometria de Fluxo , Lisinopril/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Previous reports have shown that heparin may promote human hypotension and vascular relaxation by elevation of NO levels through unclear mechanisms. We hypothesized that endothelial muscarinic M(3) receptor activation mediates the heparin-induced vasodilation of rat aortic rings. The experiments were carried out using unfractionated heparin extracted from bovine intestinal mucosa, which elicited an endothelium and NO-dependent relaxation of aortic segments with maximal potency and efficacy (EC(50): 100±10 µmol/L; E(max): 41±3%). Atropine and 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide inhibitors reduced the heparin-dependent relaxation, indicating that M(3) muscarinic receptor is involved in this phenomenon. However, no direct binding of heparin to muscarinic receptors was observed. More importantly, studies performed using the arginine-glycine-aspartic acid peptide and 1-(1,1-dimethylethyl)-3-(1-naphthalenyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine, an Src family inhibitor, reduced by 51% and 73% the heparin-dependent relaxation, respectively, suggesting the coupling of heparin and M(3) receptor through extracellular matrix molecules and integrin. Furthermore, unfractionated heparin induced activation of focal adhesion protein kinase, Src, and paxillin. Finally, fluorescence resonance energy transfer approach confirmed the interaction of the M(3) receptor to integrin. Taken together, these data demonstrate the participation of M(3) receptor and integrin in heparin-dependent relaxation of vascular smooth muscle. These results provide new insights into the molecular mechanism and potential pharmacological action of heparin in vascular physiology.
Assuntos
Aorta Torácica/efeitos dos fármacos , Heparina/farmacologia , Integrinas/metabolismo , Receptor Muscarínico M3/metabolismo , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Anticoagulantes/farmacologia , Aorta Torácica/metabolismo , Aorta Torácica/fisiologia , Atropina/farmacologia , Western Blotting , Bovinos , Linhagem Celular , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Transferência Ressonante de Energia de Fluorescência , Técnicas In Vitro , Masculino , Óxido Nítrico/biossíntese , Oligopeptídeos/farmacologia , Paxilina/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Ratos , Ratos Wistar , Vasodilatadores/farmacologiaRESUMO
Angiotensin I-converting enzyme (ACE), a common element of renin-angiotensin system (RAS) and kallikrein-kinin system (KKS), is involved in myelopoiesis modulation, mainly by cleaving the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). Based on this finding and in our results showing B1 and B2 kinin receptors expression in murine bone marrow (BM) cells, we evaluated the ACE influence on myelopoiesis of kinin B1 receptor knockout mice (B1KO) using long-term bone marrow cultures (LTBMCs). Captopril and AcSDKP were used as controls. Enhanced ACE activity, expressed by non-hematopoietic cells (Ter-199(-) and CD45(-)), was observed in B1KO LTBMCs when compared to wild-type (WT) cells. ACE hyperfunction in B1KO cells was maintained when LTBMCs from B1KO mice were treated with captopril (1.0microM) or AcSDKP (1.0nM). Although no alterations were observed in ACE mRNA and protein levels under these culture conditions, 3.0nM of AcSDKP increased ACE mRNA levels in WT LTBMCs. No alteration in the number of GM-CFC was seen in B1KO mice compared to WT animals, even when the former were treated with AcSDKP (10microg/kg) or captopril (100mg/kg) for 4 consecutive days. Hematological data also revealed no differences between WT and B1KO mice under basal conditions. When the animals received 4 doses of lipopolysaccharide (LPS), a decreased number of blood cells was detected in B1KO mice in relation to WT. We also found a decreased percentage of Gr1(+)/Mac-1(+), Ter119(+), B220(+), CD3(+), and Lin(-)Sca1(+)c-Kit(+) (LSK) cells in the BM of B1KO mice compared to WT animals. Low AcSDKP levels were observed in BM cultures from B1KO in comparison to WT cultures. We conclude that ACE hyperfunction in B1KO mice resulted in faster hydrolysis of AcSDKP peptide, which in turn decreased in BM tissues allowing HSC to enter the S stage of the cell cycle.
Assuntos
Mielopoese/efeitos dos fármacos , Oligopeptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Receptor B1 da Bradicinina/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Captopril/farmacologia , Granulócitos/citologia , Granulócitos/efeitos dos fármacos , Sistema Calicreína-Cinina , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidil Dipeptidase A/genética , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Sistema Renina-AngiotensinaRESUMO
Low-intensity pulsed ultrasound (LIPUS) is commonly used in the treatment of fractures and nonunion-promoting acceleration of healing fractures. In this report, we investigated the implication of the P2 receptors in osteoblast proliferation induced with LIPUS treatment. We observed that ADP, ATP, UTP, and UDP promote osteoblast increase and an increase of intracellular Ca(2+), through activation of P2Y receptors. Osteoblasts' expression of the P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), P2Y(12), and P2Y(13) receptors was confirmed. In addition, the participation of the P2Y(1) receptor in osteoblast increase and the ADP-dependent increase of Ca(2+) concentration were shown. Furthermore, release of ATP/purines was induced by LIPUS treatment. Finally, LIPUS-dependent osteoblast increase was abolished in the presence of the Ca(2+) chelator (BAPTA), the inositol 1,4,5-trisphosphate receptor antagonist (2-APB), and the selective P2Y(1) receptor antagonist (MRS2179). In conclusion, LIPUS treatment induces osteoblastogenesis via the release of purines, such as ATP, activating P2Y receptors, mainly the P2Y(1) receptor.
Assuntos
Osteoblastos/citologia , Osteoblastos/metabolismo , Receptores Purinérgicos P2/metabolismo , Ultrassom , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2 , Ratos , Ratos Wistar , Receptores Purinérgicos P2Y1RESUMO
Normal pregnancy is associated with systemic and intrarenal vasodilatation resulting in an increased glomerular filtration rate. This adaptive response occurs in spite of elevated circulating levels of angiotensin II (Ang II). In the present study, we evaluated the potential mechanisms responsible for this adaptation. The reactivity of the mesangial cells (MCs) cultured from 14-day-pregnant rats to Ang II was measured through changes in the intracellular calcium concentration ([Cai]). The expression levels of inducible nitric oxide synthase (iNOS), the Ang II-induced vasodilatation receptor AT2, and the relaxin (LGR7) receptor were evaluated in cultured MCs and in the aorta, renal artery and kidney cortex by real time-PCR. The intrarenal distribution of LGR7 was further analyzed by immunohistochemistry. The MCs displayed a relative insensitivity to Ang II, which was paralleled by an impressive increase in the expression level of iNOS, AT2 and LGR7. These results suggest that the MCs also adapt to the pregnancy, thereby contributing to the maintenance of the glomerular surface area even in the presence of high levels of Ang II. The mRNA expression levels of AT2 and LGR7 also increased in the aorta, renal artery and kidney of the pregnant animals, whereas the expression of the AT1 did not significantly change. This further suggests a role of these vasodilatation-induced receptors in the systemic and intrarenal adaptation during pregnancy. LGR7 was localized in the glomeruli and on the apical membrane of the tubular cells, with stronger labeling in the kidneys of pregnant rats. These results suggest a role of iNOS, AT2, and LGR7 in the systemic vasodilatation and intrarenal adaptation to pregnancy and also suggest a pivotal role for relaxin in the tubular function during gestation.
Assuntos
Adaptação Fisiológica , Rim/fisiologia , Vasodilatação/fisiologia , Angiotensina II/metabolismo , Animais , Feminino , Imuno-Histoquímica , Rim/irrigação sanguínea , Rim/enzimologia , Rim/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase , Gravidez , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismoRESUMO
Previous studies reported by our group have introduced a new antitumoural drug called Biphosphinic Palladacycle Complex (BPC). In this paper we show that BPC causes apoptosis in leukaemia cells (HL60 and Jurkat), but not in normal human lymphocytes. IC(50) values obtained for both cell lines using the MTT and trypan blue exclusion assays 5h after BPC treatment were lower than 8.0 microM. Using metachromatic fluorophore, acridine orange, we observed that BPC elicited lysosomal rupture of leukaemic cells. Furthermore, BPC triggered caspase-3 and caspase-6 activation and apoptosis in cell lines, inducing chromatin condensation, apoptotic bodies, and DNA fragmentation. Interestingly, the lysosomal cathepsin B inhibitor CA074 markedly decreased BPC-induced caspase-3 and caspase-6 activation as well as cell death. Lysosomal BPC-induced membrane destabilisation was not dependent on reactive oxygen species generation, which was consistent with the absence of cellular HL60 and Jurkat membrane lipid peroxidation. We conclude that, following BPC treatment, lysosomal membrane rupture precedes cell death and the apoptotic signalling pathway is initiated by the release of cathepsin B in the cytoplasm of leukaemia cells. As no toxic effects for human lymphocytes were observed, we suggest that BPC is more selective for transformed cells, mainly due to their exacerbated lysosome expression.
Assuntos
Antineoplásicos/farmacologia , Leucemia/tratamento farmacológico , Compostos Organometálicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Células Jurkat , Leucemia/enzimologia , Leucemia/patologia , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismoRESUMO
The role of intracellular Ca2+ (Ca2+i) on hematopoiesis was investigated in long term bone marrow cultures using cytokines and agonists of P2 receptors. Cytokines interleukin 3 and granulocyte/macrophage colony stimulator factor promoted a modest increase in Ca2+i concentration ([Ca2+]i) with activation of phospholipase Cgamma, MEK1/2, and Ca2+/calmodulin kinase II. Involvement of protein kinase C was restricted to stimulation with interleukin 3. In addition, these cytokines promoted proliferation (20 times) and an increase in the Gr-1(-)Mac-1+ population with participation of gap junctions (GJ). Nevertheless ATP, ADP, and UTP promoted a large increase in [Ca2+]i, moderate proliferation (6 times), a reduction in the primitive Gr-1(-)Mac-1(-)c-Kit+ population, and differentiation into macrophages without participation of GJ. It is likely that Ca2+i participates as a regulator of hematopoietic signaling: moderate increases in [Ca2+]i would be related to cytokine-dependent proliferation with participation of GJ, whereas high increases in [Ca2+]i would be related to macrophage differentiation without maintenance of the primitive population.
Assuntos
Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Sistema Hematopoético/citologia , Sistema Hematopoético/metabolismo , Espaço Intracelular/metabolismo , Agonistas do Receptor Purinérgico P2 , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Conexinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sistema Hematopoético/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2/metabolismoRESUMO
Trypanosoma cruzi metacyclic trypomastigotes of the major phylogenetic lineages use specific signaling pathways to invade host cells. Using a panel of drugs, we studied if the differences in the ability of extracellular amastigotes (EA) from G (T. cruzi I) and CL (T. cruzi II) strains to invade host cells could be associated to activation of specific signaling routes. Sonicated extracts from G or CL strain EA induced transient raises in HeLa cell intracellular Ca(2+) levels in a dose-dependent manner. Treatment of EA with drugs that affect Ca(2+) release from inositol-1,4,5-triphosphate-sensitive stores did not significantly affect the infectivity of either strain, whereas EA of both strains treated with ionomycin plus NH(4)Cl or nigericin that release Ca(2+) from acidocalcisomes had their infectivity reduced. Treatment of parasites with adenylate cyclase activator forskolin increased the infectivity of both strains towards HeLa cells. These data, taken together, suggest that, for host cell invasion, G and CL strain EA engage signaling pathways that lead to an increase of cyclic adenosine monophosphate and Ca(2+) mobilization from acidocalcisomes. Moreover, treatment of EA with genistein reduced by approximately 45% the invasion of HeLa cells by G but not by CL strain, implicating a protein tyrosine kinase in the process. In line with this, HeLa cell extracts contained a protein tyrosine kinase activity that mediated the phosphorylation of 87- and 175-kDa polypeptides of EA from G but not from CL strain. Regarding the target cell response, the activation of host PI3 kinase appears to be required for invasion by either strain as treatment of HeLa cells with wortmannin reduced EA infectivity. These data overall reinforce the concept that cell invasion by T. cruzi EA markedly differs from the process involving metacyclic trypomastigotes.
Assuntos
Doença de Chagas/parasitologia , Trypanosoma cruzi/patogenicidade , Androstadienos/farmacologia , Animais , Chlorocebus aethiops , Haplorrinos , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Filogenia , Transdução de Sinais , Trypanosoma cruzi/classificação , Células Vero , WortmaninaRESUMO
In this study, we investigated the effect of aging on intracellular Ca2+ stores, as sarcoendoplasmic reticulum (SR) and mitochondria, and the influence of these compartments on contraction of rat colon smooth muscle [Bitar, K.N., 2003. Aging and neural control of the GI tract V. Aging and gastrointestinal smooth muscle: from signal transduction to contractile proteins. Am. J. Physiol. Gastrointest. Liver. Physiol. 284(1), G1-G7; Marijic, J., Li, Q.X., Song, M., Nishimaru, K., Stefani, E., Toro, L., 2001. Decreased expression of voltage-and Ca2+-activated K+ channels in coronary smooth muscle during aging. Circ. Res. 88, 210-234; Rubio, C., Moreno, A., Briones, A. Ivorra, M.D., D'Ocon, P., Vila, E., 2002. Alterations by age of calcium handling in rat resistance arteries. J. Cardiovasc. Pharmacol. 40(6), 832-840]. Calcium stores and contraction were evaluated by simultaneous measurements of fluorescence and tension in smooth muscle strips loaded with fura-2. Results showed that activation of muscarinic receptors by methylcholine (MCh, 10 microM), induced a greater contraction in aged rats than in adult animals. The inhibition of Ca2+ ATPase by thapsigargin (TG, 1 microM) did not prevent the refilling of SR either in adult or aged rats. MCh, in the presence of TG, induced an increase in transient fluorescence, indicating a release of Ca2+ from TG-insensitive compartment. The mitochondrial uncoupler, FCCP (5 microM), caused a greater increase in intracellular Ca2+ and tension in aged rats, indicating that mitochondria may accumulate more Ca2+ during aging. The present results show that changes in intracellular Ca2+ stores, such as mitochondria and SR, affect contraction and may cause dysfunctions during aging that could culminate in severe alterations of Ca2+ homeostasis and cell damage.
Assuntos
Envelhecimento/metabolismo , Cálcio/metabolismo , Colo/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Envelhecimento/fisiologia , Animais , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/fisiologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Colina/análogos & derivados , Colina/farmacologia , Colo/efeitos dos fármacos , Colo/fisiologia , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Feminino , Mitocôndrias Musculares/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ratos , Ratos Wistar , Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia , Técnicas de Cultura de Tecidos , Desacopladores/farmacologiaRESUMO
BACKGROUND: Cyclosporin A (CsA) nephrotoxicity has been attributed primarily to renal haemodynamic alterations caused by afferent arteriolar vasoconstriction. However, CsA nephropathy is also characterized by CsA-induced pre-glomerular disturbances and interstitial injury that may occur independently of haemodynamic changes. Given the high lipophilic activity of CsA, we hypothesized that direct tubular injury is likely to contribute to nephrotoxicity. METHODS: To investigate tubular toxicity of CsA, increasing concentrations of CsA (1, 2.5, 10, 25, 50 and 100 micro g/ml) and its vehicle (cremophor) were added to isolated rat proximal tubules (PT). Cell injury was assessed by lactate dehydrogenase (LDH) release. The role of Ca(2+) ions in tubular toxicity and the effect of calcium channel blockers on CsA toxicity were evaluated by measuring intracellular calcium using the fluorescent dye Fura-2 AM. The role of Mg(2+) ions was assessed using high extracellular Mg(2+) medium (2 mM). RESULTS: Whereas cremophor alone was not toxic to PT, CsA caused PT injury but only at the highest concentration (100 micro g/ml). After 90 min incubation, LDH was 22.5% in control PT and 41.9% in PT treated with 100 micro g/ml CsA (P < 0.001, n = 11). There was a transient increase in intracellular calcium ([Ca(2+)](i)) after CsA administration. A low calcium medium (100 nM) prevented CsA injury to renal tubules. However, verapamil, but not nifedipine, enhanced cell damage. Only nifedipine completely prevented [Ca(2+)](i) increases following CsA. Finally, a high Mg(2+) medium attenuated CsA-induced injury. CONCLUSION: We found that high CsA concentrations caused Ca(2+)- and Mg(2+)-dependent PT injury. Thus, low extracellular Ca(2+) and high Mg(2+) media attenuated CsA-induced tubular injury. Verapamil, but not nifedipine, enhanced CsA tubular toxicity. Therefore, CsA-induced tubular injury may contribute to CsA nephrotoxicity independently of haemodynamic disturbances.
Assuntos
Cálcio/fisiologia , Ciclosporina/efeitos adversos , Imunossupressores/efeitos adversos , Túbulos Renais Proximais/efeitos dos fármacos , Magnésio/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cátions Bivalentes , Técnicas de Cultura , Túbulos Renais Proximais/patologia , Masculino , Ratos , Ratos Wistar , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/fisiologiaRESUMO
Metacyclic trypomastigotes of Trypanosoma cruzi express a developmentally regulated 82-kDa surface glycoprotein (gp82) that has been implicated in host cell invasion. gp82-mediated interaction of metacyclic forms with target cells induces in both cells activation of the signal transduction pathways, leading to intracellular Ca(2+) mobilization, which is required for parasite internalization. Noninfective epimastigotes do not express detectable levels of gp82 and are unable to induce a Ca(2+) response. We stably transfected epimastigotes with a T. cruzi expression vector carrying the metacyclic stage gp82 cDNA. These transfectants produced a functional gp82, which bound to and triggered a Ca(2+) response in HeLa cells, in the same manner as the metacyclic trypomastigote gp82. Such properties were not found in epimastigotes transfected with the plasmid vector alone. Epimastigotes expressing gp82 on the surface adhered to HeLa cells but were not internalized. Treatment of gp82-expressing epimastigotes with forskolin, an activator of adenylyl cyclase that increases the metacyclic trypomastigote entry into target cells, did not promote parasite internalization. P175, an intracellular tyrosine phosphorylated protein, which appears to play a role in gp82-dependent signaling cascade in metacyclic forms, was undetectable in epimastigotes, either transfected or not with pTEX-gp82. Overall, our results indicate that gp82 is required but not sufficient for target cell invasion.
Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas de Protozoários/fisiologia , Trypanosoma cruzi/patogenicidade , Adesividade , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células HeLa , Humanos , Camundongos , Gambás , Fosforilação , TransfecçãoRESUMO
Experiments were undertaken to assess the role of amifostine in the activation of latent TGFbeta1 and in the smad proteins cascade (smad 2/3, smad4, smad7), focusing on megakaryocytes, in the bone marrow irradiated in vivo. Non-irradiated megakaryocytes were negative for active TGFbeta1. Immunopositivity to active TGFbeta1 was detected in megakaryocytes 10 days after irradiation in amifostine- treated and untreated marrows. Smad 2/3 and smad 4 were strongly positive in the nucleus of megakaryocytes 10 days after irradiation. At the same time, a predominant hypocellular bone marrow with foci of hematopoiesis was observed with few megakaryocytes. An increase in the number of reticulin fibers was also seen. In amifostine-treated marrows, smad 2/3 and smad4 were not detected in the nucleus but were positive in the cytoplasm of megakaryocytes 10 days after irradiation. Coincidentally, bone marrows were cellular with megakaryocytes. Smad7 immunoexpression was detected in the cytoplasm of megakaryocytes in the non-irradiated, amifostine-treated and in the irradiated, amifostine-treated marrows. Data indicate that amifostine does not prevent latent TGFbeta1 activation in irradiated megakaryocytes. While TGFbeta1 signal transduction occurs in megakaryocytes in untreated bone marrows, it is inhibited in megakaryocytes in amifostine-treated marrows due to the induction of smad 7 activation. This is the first report showing smad 7 activation by amifostine. Our results also suggest a role for TGFbeta1 as an inhibitor of megakaryocytes in vivo.