RESUMO
Tumor-associated carcinoembryonic antigen (CEA) is a natural target for vaccines against colorectal cancers. Our previous experience with a DNA vaccine with scFv6.C4, a CEA surrogate, showed a CEA-specific immune response with 40% of tumor-free mice after challenge with B16F10-CEA and 47% with MC38-CEA cells. These percentages increased to 63% after using FrC as an adjuvant. To further enhance the vaccine efficacy, we tested GM-CSF and IFNγ as adjuvants. C57BL/6J-CEA2682 mice were immunized 4 times with uP-PS/scFv6.C4, uP-PS/scFv6.C4 + uP-IFNγ, or uP-PS/scFv6.C4 + uP-GMCSF. After one week, the mice were challenged with MC38-CEA, and tumor growth was monitored over 100 days. Immunization with scFv6.C4 and scFv6.C4 + GM-CSF resulted in a gradual increase in the anti-CEA antibody titer, while scFv6.C4 + IFNγ immunization led to a rapid and sustained increase in the titer. The addition of IFNγ also induced higher CD4 + and CD8 + responses. When challenged, almost 80% of the scFv6.C4 + IFNγ-vaccinated mice did not develop tumors, while the others had a significant tumor growth delay. The probability of being tumor-free was 2700% higher using scFv6.C4 + IFNγ than scFv6.C4. The addition of GM-CSF had no additional effect on tumor protection. DNA immunization with scFv6.C4 + IFNγ, but not GM-CSF, increased the antitumor effect via readily sustained specific humoral and cytotoxic responses to CEA.
Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas de DNA , Camundongos , Animais , Antígeno Carcinoembrionário/genética , Camundongos Endogâmicos C57BL , Interferon gama , Vacinas Anticâncer/genéticaRESUMO
Deficiency in memory formation and increased immunosenescence are pivotal features of Trypanosoma cruzi infection proposed to play a role in parasite persistence and disease development. The vaccination protocol that consists in a prime with plasmid DNA followed by the boost with a deficient recombinant human adenovirus type 5, both carrying the ASP2 gene of T. cruzi, is a powerful strategy to elicit effector memory CD8+ T-cells against this parasite. In virus infections, the inhibition of mTOR, a kinase involved in several biological processes, improves the response of memory CD8+ T-cells. Therefore, our aim was to assess the role of rapamycin, the pharmacological inhibitor of mTOR, in CD8+ T response against T. cruzi induced by heterologous prime-boost vaccine. For this purpose, C57BL/6 or A/Sn mice were immunized and daily treated with rapamycin for 34 days. CD8+ T-cells response was evaluated by immunophenotyping, intracellular staining, ELISpot assay and in vivo cytotoxicity. In comparison with vehicle-injection, rapamycin administration during immunization enhanced the frequency of ASP2-specific CD8+ T-cells and the percentage of the polyfunctional population, which degranulated (CD107a+) and secreted both interferon gamma (IFNγ) and tumor necrosis factor (TNF). The beneficial effects were long-lasting and could be detected 95 days after priming. Moreover, the effects were detected in mice immunized with ten-fold lower doses of plasmid/adenovirus. Additionally, the highly susceptible to T. cruzi infection A/Sn mice, when immunized with low vaccine doses, treated with rapamycin, and challenged with trypomastigote forms of the Y strain showed a survival rate of 100%, compared with 42% in vehicle-injected group. Trying to shed light on the biological mechanisms involved in these beneficial effects on CD8+ T-cells by mTOR inhibition after immunization, we showed that in vivo proliferation was higher after rapamycin treatment compared with vehicle-injected group. Taken together, our data provide a new approach to vaccine development against intracellular parasites, placing the mTOR inhibitor rapamycin as an adjuvant to improve effective CD8+ T-cell response.
Assuntos
Vacinas Protozoárias , Trypanosoma cruzi , Animais , Linfócitos T CD8-Positivos , Camundongos , Camundongos Endogâmicos C57BL , Sirolimo/farmacologia , VacinaçãoRESUMO
The carcinoembryonic antigen (CEA) is the main tumor-associated antigen of colorectal cancers. Previously, we developed a DNA vaccine using scFv6.C4, a CEA surrogate, against CEA-expressing tumors; 40% of the vaccinated mice were tumor-free after tumor challenge. In order to enhance vaccine efficacy, fragment C of Tetanus Toxin (FrC) was tested as adjuvant. C57BL/6J-CEA2682 mice were electroporated intramuscularly 4 times with uP-PS/scFv6.C4-FrC or uP-PS/scFv6.C4, challenged by s.c. injection of 1 × 105 MC38-CEA cells, and tumor growth was monitored over 100 days. The humoral and cellular immune responses were assessed by ELISA, immunocytochemistry, in-vitro lymphocyte proliferation, and CTL cytotoxicity assays. Immunization with uP-PS/scFv6.C4-FrC or uP-PS/scFv6.C4 induced similar anti-CEA antibody titers. However, immunocytochemistry analysis showed stronger staining with uP-PS/scFv6.C4-FrC-immunized mice sera. When challenged with MC38-CEA cells, 63% of the FrC-vaccinated mice did not develop tumors, half of the rest had a significant tumor growth delay, and the probability of being free of tumors was on average 40% higher than that of scFv6.C4-immunized mice. Addition of the adjuvant led to higher CD4+ and CD8+ proliferative responses and strong CD8+ CTL response against MC38-CEA cells. DNA immunization with scFv6.C4 and FrC increased antitumor effect via induction of high and specific humoral and cellular immune responses to CEA.
Assuntos
Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/imunologia , Anticorpos de Cadeia Única/imunologia , Toxina Tetânica/imunologia , Animais , Vacinas Anticâncer/genética , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos C57BL , Anticorpos de Cadeia Única/genética , Toxina Tetânica/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologiaRESUMO
Toll-like receptors (TLRs) comprise the best-characterized pattern-recognition receptor (PRR) family able to activate distinct immune responses depending on the receptor/adaptor set assembled. TLRs, such as TLR2, TLR4 and TLR9, and their signaling were shown to be important in Paracoccidioides brasiliensis infections. However, the role of the endosomal TLR3 in experimental paracoccidioidomycosys remains obscure. In vitro assays, macrophages of the bone marrow of WT or TLR3-/- mice were differentiated for evaluation of their microbicidal activity. In vivo assays, WT or TLR3-/- mice were infected intratracheally with Paracoccidioides brasiliensis yeasts for investigation of the lung response type induced. The cytotoxic activity of CD8+ T cells was assessed by cytotoxicity assay. To confirm the importance of CD8+ T cells in the control of infection in the absence of tlr3, a depletion assay of these cells was performed. Here, we show for the first time that TLR3 modulate the infection against Paracoccidioides brasiliensis by dampening pro-inflammatory response, NO production, IFN+CD8+T, and IL-17+CD8+T cell activation and cytotoxic function, associated with granzyme B and perforin down regulation. As conclusion, we suggest that TLR3 could be used as an escape mechanism of the fungus in an experimental paracoccidioidomycosis.
Assuntos
Paracoccidioides/patogenicidade , Paracoccidioidomicose/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Granzimas/metabolismo , Pulmão/imunologia , Ativação Linfocitária , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/metabolismo , Receptor 3 Toll-Like/genéticaRESUMO
Integrins mediate the lymphocyte migration into an infected tissue, and these cells are essential for controlling the multiplication of many intracellular parasites such as Trypanosoma cruzi, the causative agent of Chagas disease. Here, we explore LFA-1 and VLA-4 roles in the migration of specific CD8+ T cells generated by heterologous prime-boost immunization during experimental infection with T. cruzi. To this end, vaccinated mice were treated with monoclonal anti-LFA-1 and/or anti-VLA-4 to block these molecules. After anti-LFA-1, but not anti-VLA-4 treatment, all vaccinated mice displayed increased blood and tissue parasitemia, and quickly succumbed to infection. In addition, there was an accumulation of specific CD8+ T cells in the spleen and lymph nodes and a decrease in the number of those cells, especially in the heart, suggesting that LFA-1 is important for the output of specific CD8+ T cells from secondary lymphoid organs into infected organs such as the heart. The treatment did not alter CD8+ T cell effector functions such as the production of pro-inflammatory cytokines and granzyme B, and maintained the proliferative capacity after treatment. However, the specific CD8+ T cell direct cytotoxicity was impaired after LFA-1 blockade. Also, these cells expressed higher levels of Fas/CD95 on the surface, suggesting that they are susceptible to programmed cell death by the extrinsic pathway. We conclude that LFA-1 plays an important role in the migration of specific CD8+ T cells and in the direct cytotoxicity of these cells.