Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 139: 106541, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228555

RESUMO

Eremitis, Pariana, and Parianella are herbaceous bamboos (tribe Olyreae) included in the subtribe Parianinae, which is characterized by the presence of fimbriae at the apex of the leaf sheaths and exclusively spiciform synflorescences. We analyzed 43 samples of herbaceous and woody bamboos in order to infer relationships within the Parianinae, based on combined data from the nuclear ribosomal internal transcribed spacer (ITS) and plastid DNA (rpl32-trnL and trnD-trnT spacers). Bayesian inference, maximum likelihood, and maximum parsimony methods were applied, and macro- and micromorphological aspects were also analyzed, including the ectexine patterns of pollen grains. Parianinae is represented by three well-supported lineages in our analyses: (1) Parianella, endemic to southern Bahia, Brazil; (2) Pariana sensu stricto with a broad distribution in southern Central America and northern South America, especially in the Amazon region; and (3) Eremitis, endemic to the Brazilian Atlantic Forest, from the states of Pernambuco to Rio de Janeiro, including one species previously described as a member of Pariana. Our molecular phylogeny showed that Pariana, as historically circumscribed, is not monophyletic, by recovering Pariana sensu stricto as strongly supported and sister to Eremitis + Pariana multiflora, with Parianella sister to the Pariana-Eremitis clade. Morphological features of their synflorescences and differences in ectexine patterns characterize each lineage. Based on all these characters and the phylogenetic results, Pariana multiflora, endemic to the state of Espírito Santo, Brazil, is transferred to Eremitis.


Assuntos
Poaceae/classificação , Teorema de Bayes , Brasil , Núcleo Celular/genética , América Central , DNA de Plantas/química , Filogenia , Plastídeos/genética , Poaceae/anatomia & histologia , Poaceae/genética , Poaceae/ultraestrutura , Pólen/ultraestrutura , Análise de Sequência de DNA , América do Sul
2.
Nat Commun ; 9(1): 3136, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087337

RESUMO

Protective adaptive immunity to Zika virus (ZIKV) has been mainly attributed to cytotoxic CD8+ T cells and neutralizing antibodies, while the participation of CD4+ T cells in resistance has remained largely uncharacterized. Here, we show a neutralizing antibody response, dependent on CD4+ T cells and IFNγ signaling, which we detected during the first week of infection and is associated with reduced viral load in the brain, prevention of rapid disease onset and survival. We demonstrate participation of these components in the resistance to ZIKV during primary infection and in murine adoptive transfer models of heterologous ZIKV infection in a background of IFNR deficiency. The protective effect of adoptively transferred CD4+ T cells requires IFNγ signaling, CD8+ T cells and B lymphocytes in recipient mice. Together, this indicates the importance of CD4+ T cell responses in future vaccine design for ZIKV.


Assuntos
Imunidade Adaptativa , Transferência Adotiva , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Interferon gama/metabolismo , Infecção por Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Peso Corporal , Chlorocebus aethiops , Feminino , Imunoglobulina G , Masculino , Camundongos , Células Vero , Zika virus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...