Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 194(Pt A): 115407, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37611337

RESUMO

Marine mammals are considered sentinel species and may act as indicators of ocean health. Plastic residues are widely distributed in the oceans and are recognised as hazardous contaminants, and once ingested can cause several adverse effects on wildlife. This study aimed to identify and characterise plastic ingestion in the Guiana dolphins (Sotalia guianensis) from the Southwestern Tropical Atlantic by evaluating the stomach contents of stranded individuals through KOH digestion and identification of subsample of particles by LDIR Chemical Imaging System. Most of the individuals were contaminated, and the most common polymers identified were PU, PET and EVA. Microplastics were more prevalent than larger plastic particles (meso- and macroplastics). Smaller particles were detected during the rainy seasons. Moreover, there was a positive correlation between the stomach content mass and the number of microplastics, suggesting contamination through trophic transfer.


Assuntos
Caniformia , Golfinhos , Animais , Plásticos , Microplásticos , Cetáceos , Polímeros
2.
Mar Pollut Bull ; 192: 115087, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263026

RESUMO

Microplastics (MPs) are ubiquitous in marine compartments, and their transboundary distribution favours the dispersion and accumulation of particles in ecosystems. This study investigated MP contamination in four coastal fish species (Haemulon squamipinna, Chaetodon ocellatus, Syacium micrurum, and Alphestes afer) from the southwestern Tropical Atlantic. An alkaline treatment was applied to extract MPs from the digestive tracts, and a Laser Direct Infrared (LDIR) system was used to identify polymers. All species analysed were contaminated with MPs, with Alphestes afer being the most contaminated (1.45 ± 1.09 MPs individual-1; frequency of occurrence 80 %). No significant differences were found in the number and size of detected particles among species. The most common shapes were fibres and films, and polyethylene was the most abundant polymer. This study provides important baseline data on MP contamination in coastal fish species inhabiting complex habitat areas relevant for conserving marine biodiversity.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/análise , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Polímeros , Peixes
3.
Environ Pollut ; 327: 121532, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001599

RESUMO

Plastic pollution is present in most marine environments; however, contamination in pelagic predators, including species of economic interest, is still poorly understood. This study aims to access the macro- and microplastic contamination in tuna and large pelagic species and verify whether a trophic transfer occurs from prey to tunas captured by two fleets in the Southwestern Tropical Atlantic (SWTA). We combined different methodological approaches to analyse the intake of macro- and microplastics. In addition to examining the plastics in the fish' stomachs, we investigated the contamination in the prey retrieved from the guts of predators. A low frequency of occurrence (3%) of macroplastic was detected in the tuna and large pelagic species; conversely, we observed a high frequency of microplastic in the tuna's stomachs (100%) and prey analysed (70%). We evinced the trophic transfer of microplastics by analysing the ingestion rate of particles in prey retrieved from the tuna stomachs. In the 34 analysed prey, we detected 355 microplastic particles. The most contaminated prey were cephalopods and fishes of the Bramidae family. The most frequent microplastic shapes in both prey and tuna stomachs were foams, pellets and fibres (<1 mm). A variety of polymers were identified; the most frequent were styrene-butadiene rubber (SBR), polyamide (PA), polyethylene terephthalate (PET) and polyethylene (PE). Our findings enhance scientific knowledge of how the ecological behaviour of marine species can affect microplastic intake.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Atum , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes
4.
Sci Total Environ ; 867: 161478, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634781

RESUMO

Plastic debris is ubiquitous in the hydrosphere. Yet, we lack an understanding of contamination among deep-sea species and primarily how each trait can influence microplastic intake. We investigated microplastic contamination in the digestive tract of hyper-abundant mesopelagic lanternfishes (n = 364 individuals) from the Southwestern Tropical Atlantic, captured from 90 to 1000 m depth. Overall, microplastics were detected in most individuals analysed (frequency of occurrence = 68 %). Large microplastics, mostly of a filamentous shape were the most frequent, followed by smaller fragments and foams. Microplastics made of high-density polymers (PET, PVC, PA, SBR rubber) were more prevalent than low-density ones (PE, EVA and PBD rubber), especially under deeper layers. Larger microplastics were detected in lanternfishes captured off the northeastern Brazilian coast (mean 0.88 ± SE 0.06 mm) compared to those from around the Rocas Atoll and Fernando de Noronha Archipelago (0.70 ± 0.07 mm; p≤ 0.05), ∼350 km from the continent. Moreover, lanternfishes that migrate from the upper mesopelagic (200-500 m) to the epipelagic layers (<200 m) had simultaneously the highest intake and the smallest particles (1.65 ± 0.17 particles individual-1 and 0.55 ± 0.07 mm; p≤ 0.05). Biological mediated transport of microplastics from the epipelagic to the mesopelagic waters was evinced, but fishes foraging in shallower layers had the lowest intake (1.11 ± 0.10 part. ind.-1; p≤ 0.05). Furthermore, the jaw length was positively associated with an increment in microplastic intake (Incidence Rate Ratio = 1.1; p≤ 0.05). The lanternfishes that preferably prey upon fish larvae are more prone to microplastic intake than their counterparts, which forage mostly on crustaceans and gelatinous zooplankton (p≤ 0.05).


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Borracha , Peixes , Polímeros , Monitoramento Ambiental , Poluentes Químicos da Água/análise
5.
Environ Pollut ; 300: 118988, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157937

RESUMO

Microplastics (MPs; <5 mm) are a macro issue recognised worldwide as a threat to biodiversity and ecosystems. Widely distributed in marine ecosystems, MPs have already been found in the deep-sea environment. However, there is little information on ecological mechanisms driving MP uptake by deep-sea species. For the first time, this study generates data on MP contamination in mesopelagic fishes from the Southwestern Tropical Atlantic (SWTA) to help understand the deep-sea contamination patterns. An alkaline digestion protocol was applied to extract MPs from the digestive tract of four mesopelagic fish species: Argyropelecus sladeni, Sternoptyx diaphana (Sternoptychidae), Diaphus brachycephalus, and Hygophum taaningi (Myctophidae). A total of 213 particles were recovered from 170 specimens, and MPs were found in 67% of the specimens. Fibres were the most common shape found in all species, whereas polyamide, polyethylene, and polyethylene terephthalate were the most frequent polymers. The most contaminated species was A. sladeni (93%), and the least contaminated was S. diaphana (45%). Interestingly, individuals caught in the lower mesopelagic zone (500-1000 m depth) were less contaminated with MPs than those captured in the upper mesopelagic layer (200-500 m). Our results highlight significant contamination levels and reveal the influence of mesopelagic fishes on MPs transport in the deep waters of the SWTA.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental/métodos , Peixes , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Mar Pollut Bull ; 174: 113309, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35090293

RESUMO

Microplastics are a relevant environmental concern in marine ecosystems due to their ubiquity. However, knowledge on their dispersion patterns within the ocean basin and the interaction with biota are scarce and mostly limited to surface waters. This study investigated microplastic contamination in two species of deep-sea cephalopods from the southwestern Atlantic with different ecological behaviour: the vampire squid (Vampyroteuthis infernalis) and the midwater squid (Abralia veranyi). Microplastic contaminated most of the evaluated specimens. V. infernalis showed higher levels of contamination (9.58 ± 8.25 particles individual-1; p < 0.05) than A. veranyi (2.37 ± 2.13 part. ind.-1), likely due to the feeding strategy of V. infernalis as a faecal pellets feeder. The size of extracted microplastics was inversely proportional to the depth of foraging. The microplastics were highly heterogeneous in composition (shape, colour and polymer type). Our results provide information regarding microplastic interaction with deep-sea organisms and evidence of the biological influence in the microplastic sinking mechanism.


Assuntos
Octopodiformes , Plásticos , Animais , Decapodiformes , Ecossistema , Microplásticos
7.
J Hazard Mater ; 403: 123796, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264901

RESUMO

Despite their representativeness, most studies to date have underestimated the amount of microfibers (MFs) in the marine environment. Therefore, further research is still necessary to identify key processes governing MF distribution. Here, the interaction among surface water temperature, salinity, currents and winds explained the patterns of MF accumulation. The estimated density of floating MFs is ∼5900 ±â€¯6800 items m-3 in the global ocean; and three patterns of accumulation were predicted by the proposed model: (i) intermediate densities in ocean gyres, Seas of Japan and of Okhotsk, Mediterranean and around the Antarctic Ocean; (ii) high densities in the Arctic Ocean; and (iii) point zones of highest densities inside the Arctic Seas. Coastal areas and upwelling systems have low accumulation potential. At the same time, zones of divergences between westerlies and trade winds, located above the tropical oceanic gyres, are predicted to accumulate MFs. In addition, it is likely that the warm branch of the thermohaline circulation has an important role in the transport of MFs towards the Arctic Ocean, emphasizing that surface water masses are important predictors. This study highlights that the Arctic Ocean is a dead end for floating MFs.

8.
Mar Environ Res ; 151: 104786, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31521387

RESUMO

Estuarine gradients rule the dispersal of larval fishes leading to community replenishment and the recruitment of juveniles to adult populations. Here, the variations in density and diversity of fish larvae communities were assessed to understand whether the seasonal variability of environmental forcings in two tropical estuaries express the estuarine function for larvae. Spatial differences ruled larval dispersal. Larval recruitment to the Caeté Estuary occurs in the upper estuary in the late-dry season. Species richness is higher when temperature, salinity and precipitation increase, while changes in diversity is more pronounced in the lower estuary due to salinity variability. Larval recruitment to the Goiana Estuary occurs in the lower estuary, with peaks during wet warmer conditions. Species richness and diversity are also higher seawards. Thus, the seasonal fluctuation of the salinity ecocline had a greater power to predict larvae distribution and diversity by retaining larvae in essential habitats with suitable environmental conditions.


Assuntos
Estuários , Peixes , Animais , Ecossistema , Larva , Dinâmica Populacional , Salinidade , Estações do Ano
9.
Sci Rep ; 9(1): 13514, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534161

RESUMO

The dynamics of microfilament (<5 mm) ingestion were evaluated in three species of snooks. The ingestion of different colours and sizes of microfilaments were strongly associated with the spatio-temporal estuarine use and ontogenetic shifts of snooks. Their feeding ecology was also analysed to assess dietary relationships with patterns of contamination. All species were highly contaminated with microfilaments. The highest ingestion of microfilaments occurred in the adults, when fishes became the main prey item and also during the peak of fishing activities, in the rainy season. This suggests that trophic transfer, in addition to periods of high availability of microfilaments are important pathways for contamination. The ingestion of microfilaments of different colours and sizes was likely influenced by input sources. Blue microfilaments were frequently ingested, and appear to have both riverine and estuarine inputs, since they were ingested in all seasons and habitats. Purple and red microfilaments were more frequently ingested in the lower estuarine habitats. The length of microfilaments was also associated with environmental variability. Longer microfilaments were ingested in habitats with greater riverine influence, the opposite was observed for shorter microfilaments. Therefore, microfilament contamination in snooks are a consequence of their ecological patterns of estuarine uses through different seasons and life history stages.


Assuntos
Ingestão de Alimentos/fisiologia , Perciformes/metabolismo , Poluentes da Água/análise , Animais , Ecossistema , Monitoramento Ambiental/métodos , Estuários , Comportamento Alimentar/fisiologia , Pesqueiros , Peixes/metabolismo , Salinidade , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 655: 292-304, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30471597

RESUMO

This study assessed the seasonal patterns of habitat utilization, feeding ecology and microplastic contamination in different ontogenetic phases of sympatric snooks (Centropomus undecimalis and C. mexicanus) inhabiting a tropical estuary. More than 50% of snooks, in all ontogenetic phases, ingested microplastics (1.5 ±â€¯0.1 and 1.4 ±â€¯0.1 particles ind-1). Juveniles migrated to nursery grounds in the upper estuary, during the early dry (C. undecimalis 6.5 ±â€¯2.8 ind-1) (p < 0.01) and early rainy seasons (C. mexicanus 4.1 ±â€¯1.9 ind-1). There, they fed mostly on invertebrates (Polychaeta) (p < 0.01), and became contaminated by microplastics (C. undecimalis: 0.8 ±â€¯0.4 particles ind-1; C. mexicanus: 1.7 ±â€¯0.5 particles ind-1). Sub-adults of both species forage principally in the estuarine habitats after shifting their diet from invertebrates (shrimps) in the upper reaches (1806.4 ±â€¯1729.6 mg ind-1) to pelagic fishes (R. bahiensis) in seaward habitats (2507.7 ±â€¯1758.4 mg ind-1). During feeding continues the contamination by microplastics (3.1 ±â€¯0.8 part. ind-1). Adults use the adjacent coastal as feeding and spawning grounds during the rainy season. In this phase, snooks are mostly piscivorous (R. bahiensis: up to 5303.8 ±â€¯3213.4 mg ind-1), but also ingest penaeid shrimp as complementary item (up to 175.9 ±â€¯156.7). Microplastics contamination rates increased towards the adult phase, with maximum contamination coinciding with peaks of fish ingestion, suggesting trophic transfer of microplastics. The lower estuary and adjacent coastal zone were important contamination sites, especially during the rainy season (up to 3.1 ±â€¯0.8 part. ind-1) (p < 0.01), when fishery activities is intense and river basin runoff increases. Consequently, the availability of microplastics is higher during this time of year in the lower portion of the estuary. Snooks had similar prey preferences, but the use of different habitats along the life cycle of each species avoids overlaps in estuarine use and minimizes competition.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Comportamento Alimentar/fisiologia , Peixes/crescimento & desenvolvimento , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Brasil , Pesqueiros , Peixes/fisiologia , Estágios do Ciclo de Vida , Chuva , Estações do Ano
11.
Environ Pollut ; 242(Pt A): 1010-1021, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30373032

RESUMO

The distribution, feeding ecology and microplastic contamination were assessed in different ontogenetic phases of Haemulidae species inhabiting the Goiana Estuary, over a seasonal cycle. Pomadasys ramosus and Haemulopsis corvinaeformis are estuarine dependent species that use habitats with specific environmental conditions each season. Pomadasys ramosus was found in the upper and middle estuaries during the rainy season, when salinity showed the lowest values. Haemulopsis corvinaeformis was found in the lower estuary during the dry season, when salinity increased in the estuary. Juveniles of P. ramosus are zooplanktivores, feeding mainly on calanoid copepods. Sub-adults and adults are zoobenthivores, feeding on invertebrates associated to the bottom, mainly Polychaeta. Juveniles of H. corvinaeformis were not found in the main channel, but sub-adults and adults showed a zoobenthivore habit, feeding mainly on Anomalocardia flexuosa (Mollusca: Bivalvia). Dietary shifts along the life cycle and the spatio-temporal relationship between their distribution and the availability of microplastics along the estuary seem to have a strong influence in the ingestion of microfilaments. The highest average ingestion of microfilaments by P. ramosus coincided with the peak of ingestion of Polychaeta by sub-adults in the upper estuary during the late rainy season. For H. corvinaeformis the highest ingestion of microfilaments coincided with the peak of ingestion of A. flexuosa by adults in the lower estuary during the late dry season. Such contamination might be attributed to the time when these phases shifted to a more diverse diet and began to forage on benthic invertebrates. Research on microplastic contamination must consider species-specific behaviour, since the intake of microplastics is dependent on patterns of distribution and trophic guild within fish assemblages.


Assuntos
Monitoramento Ambiental , Estuários , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Ecologia , Ecossistema , Peixes , Estágios do Ciclo de Vida , Chuva , Salinidade , Estações do Ano
12.
Environ Pollut ; 236: 706-717, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29453186

RESUMO

Microplastic contamination was investigated in the gut contents of an economically important estuarine top predator, Cynoscion acoupa, according to spatiotemporal and ontogenetic use of a tropical estuary. Microplastic contamination was found in more than half of the analysed fish. Ingested microplastics were classified by type, colour and length with most of the particles consisting of filaments (<5 mm). Longer filaments were more frequently ingested in the upper estuary and smaller filaments in the lower estuary, as a result of differences in hydrodynamic forces and proximity to the probable input sources. The river is likely an important source of filaments to the estuary and filaments ingested in the upper estuary showed little sign of weathering, when compared with those from the lower estuary, which are subject to intense weathering and consequent break-up of particles to smaller sizes. Most filaments, of all colours, accumulated in adults of C. acoupa, which are more susceptible to contamination through both direct ingestion and trophic transference as they shift their feeding mode to piscivory. Moreover, the highest ingestion of filaments in adults occurred in the lower estuary, during the late rainy season, likely associated with the intense fishing activities in this habitat, which results in a greater input of filaments from fishing gear, which are mainly blue in colour. Overall, 44% of the ingested filaments were blue, 20% purple, 13% black, 10% red and 12% white. The next most common colour, the purple filaments, are most likely blue filaments whose colour has weathered to purple. Red filaments were proportionally more ingested in the lower estuary, indicating a coastal/oceanic source. White and black filaments were more commonly ingested in the inner estuary, suggesting that they have a riverine origin and/or were actively ingested by juveniles and sub-adults, which inhabit the inner estuary and have zooplankton as an important food resource.


Assuntos
Pesqueiros/estatística & dados numéricos , Perciformes/metabolismo , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Oceano Atlântico , Ingestão de Alimentos , Ecossistema , Monitoramento Ambiental/métodos , Estuários , Plásticos/metabolismo , Chuva , Rios , Estações do Ano , Poluentes Químicos da Água/metabolismo , Zooplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...