Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e20128, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809419

RESUMO

Replacement of bone defects with bone graft or implant is an important therapeutic strategy that has been used in routine practice. However, the identification of biomaterials that can mimic natural bone properties and serve as bone substitutes remains a major challenge. In this context, alumina-zirconia (Al2O3/ZrO2) nanocomposites emerge as potential alternatives for biomedical applications, owing to their high mechanical strength, wear resistance, and biocompatibility. In this sense, in this study, we prepared porous Al2O3/ZrO2 nanocomposites (scaffolds) using the gelcasting method and biomimetically coated them with calcium phosphate (CaP). We evaluated the biocompatibility of the scaffolds using the quantitative MTT cytotoxicity test in L929 cells. Moreover, rabbit adipose-derived mesenchymal stem cells (rADMSCs) were seeded with CaP-containing and CaP-free porous samples to evaluate cell proliferation and cell-scaffold interaction in vitro. Our results showed that the Al2O3/ZrO2 scaffolds were non-cytotoxic, and there were no significant differences between CaP-containing and CaP-free scaffolds in terms of cell growth and adhesion. In contrast, when co-cultured with rADMSCs, the scaffolds enhanced cell proliferation and cell adhesion. The rADMSCs adhered and migrated through the pores of the scaffold and anchored to different poles with differentiated elongated structures. These results suggest osteogenic differentiation of rADMSCs in response to mechanical loading of Al2O3/ZrO2 scaffolds. Therefore, we conclude that Al2O3/ZrO2 scaffolds have demonstrated significant implications in bone tissue engineering and are valuable biomaterials for bone replacement.

2.
Prog Biomater ; 11(3): 263-271, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35739413

RESUMO

We evaluated the influence of the open porosity of alumina (Al2O3) substrates on the phase formation of calcium phosphates deposited onto it surface. The Al2O3 substrates were prepared with different porosities by the foam-gelcasting method associated with different amounts of polyethylene beads. The substrates were coated biomimetically for 14 and 21 days of incubation in a simulated body fluid (SBF). Scanning electron microscopy characterisation and X-ray computed microtomography showed that the increase in the number of beads provided an increase in the open porosity. The X-ray diffraction and infrared spectroscopy showed that the biomimetic method was able to form different phases of calcium phosphates. It was observed that the increase in the porosity favoured the formation of ß-tricalcium phosphate for both incubation periods. The incubation period and the porosity of the substrates can influence the phases and the amount of calcium phosphates formed. Thus, it is possible to target the best application for the biomaterial produced.

3.
J Environ Qual ; 31(5): 1665-70, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12371184

RESUMO

Soil sorption of most hydrophobic organic compounds (e.g., nonpolar pesticides) is directly related to soil organic matter (SOM) content. Humic substances are the major SOM components, containing carboxylic, phenolic, amine, quinone, and other functional groups, and specific structural configurations. In this paper, sorption interactions between imazaquin (2-[4,5-dydro-4-methyl-4-(1-methylethyl)-5-oxo-1H- imidazol-2-yl]-3-quinoline-carboxylic acid) herbicide (IM) and a humic acid (HA) extracted from a typical Brazilian Oxisol were studied with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FTIR) spectroscopic techniques. A polarographic technique was used to quantify sorption. The IM amount sorbed on the HA was much higher than that on the whole soil within the pH range studied, emphasizing the prominent role played by SOM on IM sorption. Moreover, IM sorption increased as the soil-solution pH decreased. This enhancement in sorption was attributed to the hydrophobic affinity of the herbicide by the HA and to the electrostatic interaction between the protonated quinoline group of IM and the negative sites of the HA. Hydrophobic regions in the HA's interior at low pH (< 5.0) were recently demonstrated by an EPR detectable spin-label molecule. The FTIR and EPR spectroscopy and polarography data indicated weak interaction between IM and the soil and its HA, involving hydrogen bonding, proton transfer, and cation exchange (at low pH), and mainly hydrophobic interactions. However, no strong reaction mechanism, such as charge transfer, was involved. In addition, this research suggested that soil amendment with organic material might increase magnitude of IM sorption, consequently avoiding leaching and carryover problems usually found for mobile and persistent herbicides such as imazaquin.


Assuntos
Herbicidas/química , Substâncias Húmicas/química , Imidazóis/química , Quinolinas/química , Poluentes do Solo/análise , Adsorção , Brasil , Espectroscopia de Ressonância de Spin Eletrônica , Herbicidas/análise , Imidazóis/análise , Quinolinas/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA