Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Enzyme Res ; 2010: 854526, 2010 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21048871

RESUMO

The low-cost production of cellulolytic complexes presenting high action at mild conditions and well-balanced cellulase activities is one of the major bottlenecks for the economical viability of the production of cellulosic ethanol. In the present paper, the filamentous fungus Trichoderma harzianum IOC-3844 was used for the production of cellulases from a pretreated sugarcane bagasse (namely, cellulignin), by submerged fermentation. This fungal strain produced high contents of endoglucanase activity (6,358 U·L(-1)) after 72 hours of process, and further relevant ß-glucosidase and FPase activities (742 and 445 U·L(-1), resp.). The crude enzyme extract demonstrated appropriate characteristics for its application in cellulose hydrolysis, such as high thermal stability at up to 50°C, accessory xylanase activity, and absence of proteolytic activity towards azocasein. This strain showed, therefore, potential for the production of complete cellulolytic complexes aiming at the saccharification of lignocellulosic materials.

2.
Appl Biochem Biotechnol ; 162(7): 2111-22, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20455032

RESUMO

Sugarcane bagasse is an agroindustrial residue generated in large amounts in Brazil. This biomass can be used for the production of cellulases, aiming at their use in second-generation processes for bioethanol production. Therefore, this work reports the ability of a fungal strain, Trichoderma harzianum IOC-4038, to produce cellulases on a novel material, xylan free and cellulose rich, generated from sugarcane bagasse, named partially delignified cellulignin. The extract produced by T. harzianum under submerged conditions reached 745, 97, and 559 U L(-1) of ß-glucosidase, FPase, and endoglucanase activities, respectively. The partial characterization of this enzyme complex indicated, using a dual analysis, that the optimal pH values for the biocatalysis ranged from 4.9 to 5.2 and optimal temperatures were between 47 and 54 °C, depending on the activity studied. Thermal stability analyses revealed no significant decrease in activity at 37 °C during 23 h of incubation. When compared to model strains, Aspergillus niger ATCC-16404 and Trichoderma reesei RutC30, T. harzianum fermentation was faster and its extract showed a better balanced enzyme complex, with adequate characteristics for its application in simultaneous saccharification and fermentation processes.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Saccharum/microbiologia , Trichoderma/metabolismo , Celulases/química , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/química , Resíduos Industriais/análise , Trichoderma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA