Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 857745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444668

RESUMO

The final shape and size of plant organs are determined by a network of genes that modulate cell proliferation and expansion. Among those, SCI1 (Stigma/style Cell-cycle Inhibitor 1) functions by inhibiting cell proliferation during pistil development. Alterations in SCI1 expression levels can lead to remarkable stigma/style size changes. Recently, we demonstrated that SCI1 starts to be expressed at the specification of the Nicotiana tabacum floral meristem and is expressed at all floral meristematic cells. To elucidate how SCI1 regulates cell proliferation, we screened a stigma/style cDNA library through the yeast two-hybrid (Y2H) system, using SCI1 as bait. Among the interaction partners, we identified the 14-3-3D protein of the Non-Epsilon group. The interaction between SCI1 and 14-3-3D was confirmed by pulldown and co-immunoprecipitation experiments. 14-3-3D forms homo- and heterodimers in the cytoplasm of plant cells and interacts with SCI1 in the nucleus, as demonstrated by Bimolecular Fluorescence Complementation (BiFC). Analyses of SCI1-GFP fluorescence through the cell-cycle progression revealed its presence in the nucleoli during interphase and prophase. At metaphase, SCI1-GFP fluorescence faded and was no longer detected at anaphase, reappearing at telophase. Upon treatment with the 26S proteasome inhibitor MG132, SCI1-GFP was stabilized during cell division. Site-directed mutagenesis of seven serines into alanines in the predicted 14-3-3 binding sites on the SCI1 sequence prevented its degradation during mitosis. Our results demonstrate that SCI1 degradation at the beginning of metaphase is dependent on the phosphorylation of serine residues and on the action of the 26S proteasome. We concluded that SCI1 stability/degradation is cell-cycle regulated, consistent with its role in fine-tuning cell proliferation.

2.
Front Plant Sci ; 12: 642879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815449

RESUMO

The specified floral meristem will develop a pre-established number of floral organs and, thus, terminate the floral meristematic cells. The floral meristematic pool of cells is controlled, among some others, by WUSCHEL (WUS) and AGAMOUS (AG) transcription factors (TFs). Here, we demonstrate that the SCI1 (Stigma/style cell-cycle inhibitor 1) gene, a cell proliferation regulator, starts to be expressed since the floral meristem specification of Nicotiana tabacum and is expressed in all floral meristematic cells. Its expression is higher in the floral meristem and the organs being specified, and then it decreases from outside to inside whorls when the organs are differentiating. SCI1 is co-expressed with N. tabacum WUSCHEL (NtWUS) in the floral meristem and the whorl primordia at very early developmental stages. Later in development, SCI1 is co-expressed with NAG1 (N. tabacum AG) in the floral meristem and specialized tissues of the pistil. In silico analyses identified cis-regulatory elements for these TFs in the SCI1 genomic sequence. Yeast one-hybrid and electrophoresis mobility shift assay demonstrated that both TFs interact with the SCI1 promoter sequence. Additionally, the luciferase activity assay showed that NAG1 clearly activates SCI1 expression, while NtWUS could not do so. Taken together, our results suggest that during floral development, the spatiotemporal regulation of SCI1 by NtWUS and NAG1 may result in the maintenance or termination of proliferative cells in the floral meristem, respectively.

3.
Plant Sci ; 277: 55-67, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466601

RESUMO

Plant morphogenesis is dependent on cell proliferation and cell expansion, which are responsible for establishing final organ size and shape during development. Several genes have been described as encoding components of the plant cell development machinery, among which are the plant peptides. Here we describe a novel cysteine-rich plant peptide (68 amino acids), encoded by a small open reading frame gene (sORF). It is specifically expressed in the reproductive organs of Nicotiana tabacum and is developmentally regulated. N- and C-terminal translational fusions with GFP in protoplasts have demonstrated that the peptide is not secreted. Knockdown transgenic plants produced by RNAi exhibited enlarged pistils due to cell expansion and the gene was named Small Peptide Inhibitor of Cell Expansion (SPICE). Estimation of nuclear DNA content using flow cytometry has shown that cell expansion in pistils was not correlated with endoreduplication. Decreased SPICE expression also affected anther growth and pollen formation, resulting in male sterility in at least one transgenic plant. Our results revealed that SPICE is a novel reproductive organ specific gene that controls cell expansion, probably as a component of a signal transduction pathway.


Assuntos
Flores/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento , Nicotiana/genética , Proteínas de Plantas/metabolismo , Citometria de Fluxo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fases de Leitura Aberta/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...