RESUMO
BACKGROUND: Mesenchymal stem cells are pluripotent cells that have the ability to generate cells from a cell line or in other cell types from different tissues but from the same origin. Although those cells have more limited differentiation capacity than embryonic stem cells, they are easily obtained from somatic tissue and can be grown in large quantities. This characteristic of undifferentiated stem cells differentiating into different cell lines arouses strategies in regenerative medicine for the treatment of different diseases such as neurodegenerative diseases. AIM: To evaluate the cell differentiation capacity of human breastmilk stem cells for the three germ layers by a systematic review. METHODS: The searched databases were PubMed, EMBASE, OVID, and COCHRANE LIBRARY, published between 2007 and 2018 in the English language. All were in vitro studies for analysis of the "cell differentiation potential" in the literature using the keywords "human breastmilk," "stem cells," and keywords combined with the Boolean operator "NOT" were used to exclude those articles that had the word "CANCER" and their respective synonyms, which were previously consulted according to medical subject heading terms. PRISMA 2009 guidelines were followed in this study. RESULTS: A total of 315 titles and abstracts of articles were examined. From these, 21 were in common with more than one database, leaving 294 articles for analysis. Of that total, five publications met the inclusion criteria. When analyzing the publications, it was demonstrated that human breastmilk stem cells have a high cellular plasticity, exhibiting the ability to generate cells of all three germ layers, endoderm, mesoderm, and ectoderm, demonstrating their stemness. Those cells expressed the genes, TRA-1-60/81, octamer-binding transcription factor 4, and NANOG, of which NANOG, a critical regulator for self-renewal and maintenance, was the most highly expressed. Those cells have the ability to differentiate in vitro into adipocytes, chondrocytes, osteocytes, oligodendrocytes, astrocytes, and neurons as well hepatocytes, ß-pancreatic cells, and cardiomyocytes. CONCLUSION: Although the literature has been scarce, the pluripotentiality of these cells represents great potential for tissue engineering and cellular therapy. Further studies for safe clinical translation are needed.
RESUMO
OBJECTIVE: Achilles tendon pathologies occur frequently and have a significant socioeconomic impact. Currently, there is no evidence on the best treatment for these pathologies. Cell therapy has been studied in several animal models, and encouraging results have been observed with respect to tissue regeneration. This study is aimed at evaluating the functional and histological effects of bone marrow stem cell or platelet-rich plasma implantation compared to eccentric training in the treatment of Achilles tendinopathy in rats. METHODS: Fourty-one male Wistar rats received collagenase injections into their bilateral Achilles tendons (collagenase-induced tendinopathy model). The rats were randomly divided into four groups: stem cells (SC), platelet-rich plasma (PRP), stem cells+platelet-rich plasma (SC+PRP), and control (eccentric training (ET)). After 4 weeks, the Achilles tendons were excised and subjected to biomechanical and histological analyses (Sirius red and hematoxylin-eosin staining). RESULTS: Biomechanical assessments revealed no differences among the groups in ultimate tensile strength or yield strength of the tendons (p = 0.157), but there were significant differences in the elastic modulus (MPa; p = 0.044) and maximum tensile deformation (p = 0.005). The PRP group showed the greatest maximum deformation, and the SC group showed the highest Young's modulus (elasticity) measurement. In histological analysis (hematoxylin-eosin and Sirius red staining), there were no differences among the groups. CONCLUSION: PRP and SC+PRP yielded better biomechanical results than eccentric training, showing that these treatments offer better tend function outcomes. This theoretical rationale for the belief that cell therapies can serve as viable alternatives to current treatments chronic fibrotic opens the door for opportunities to continue this research.
RESUMO
This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords "ADIPOSE", "CELLS", and "PERIODONTAL", with the Boolean operator "AND". A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.