Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 255: 119078, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754609

RESUMO

Coastal wetlands are known for their diverse ecosystems, yet their soil characteristics are often misunderstood and thought to be monotonous. These soils are frequently subjected to saline water saturation, leading to unique soil processes. However, the combination and intensity of these processes can vary considerably across different ecosystems. In this study, we hypothesize that these diverse soil processes not only govern the geochemical conditions in coastal ecosystems but also influence their ability to deliver ecosystem services. To test this hypothesis, we conducted soil analyses in mangroves, seagrass meadows, and hypersaline tidal flats along the Brazilian coast. We used key soil properties as indicators of soil processes and developed a conceptual model linking soil processes and soil-related ecosystem services in these environments. Under more anoxic conditions, the intense soil organic matter accumulation and sulfidization processes in mangroves evidence their significance in terms of climate regulation through organic carbon sequestration and contaminants immobilization. Similarly, pronounced sulfidization in seagrasses underscores their ability to immobilize contaminants. In contrast, hypersaline tidal flats soils exhibit increased intensities of salinization and calcification processes, leading to a high capacity for accumulating inorganic carbon as secondary carbonates (CaCO3), underscoring their role in climate regulation through inorganic carbon sequestration. Our findings show that contrary to previously thought coastal wetlands are far from monotonous, exhibiting significant variations in the types and intensities of soil processes, which in turn influence their capacity to deliver ecosystem services. This understanding is pivotal for guiding effective management strategies to enhance ecosystem services in coastal wetlands.

2.
Mar Pollut Bull ; 203: 116487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744046

RESUMO

Mangroves forests may be important sinks of carbon in coastal areas but upon their death, these forests may become net sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Here we assessed the spatial and temporal variability in soil CO2 and CH4 fluxes from dead mangrove forests and paired intact sites in SE-Brazil. Our findings demonstrated that during warmer and drier conditions, CO2 soil flux was 183 % higher in live mangrove forests when compared to the dead mangrove forests. Soil CH4 emissions in live forests were > 1.4-fold higher than the global mangrove average. During the wet season, soil GHG emissions dropped significantly at all sites. During warmer conditions, mangroves were net sources of GHG, with a potential warming effect (GWP100) of 32.9 ± 10.2 (±SE) Mg CO2e ha-1 y-1. Overall, we found that dead mangroves did not release great amounts of GHG after three years of forest loss.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Gases de Efeito Estufa , Metano , Solo , Áreas Alagadas , Brasil , Gases de Efeito Estufa/análise , Solo/química , Dióxido de Carbono/análise , Metano/análise , Florestas
3.
Nat Commun ; 15(1): 1549, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438380

RESUMO

The Legal Amazon of Brazil holds vast mangrove forests, but a lack of awareness of their value has prevented their inclusion into results-based payments established by the United Nations Framework Convention on Climate Change. Based on an inventory from over 190 forest plots in Amazon mangroves, we estimate total ecosystem carbon stocks of 468 ± 67 Megagrams (Mg) ha-1; which are significantly higher than Brazilian upland biomes currently included into national carbon offset financing. Conversion of mangroves results in potential emissions of 1228 Mg CO2e ha-1, which are 3-fold higher than land use emissions from conversion of the Amazon rainforest. Our work provides the foundation for the inclusion of mangroves in Brazil's intended Nationally Determined Contribution, and here we show that halting mangrove deforestation in the Legal Amazon would generate avoided emissions of 0.9 ± 0.3 Teragrams (Tg) CO2e yr-1; which is equivalent to the annual carbon accumulation in 82,400 ha of secondary forests.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Brasil , Carbono , Mudança Climática
4.
Mar Pollut Bull ; 196: 115616, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852063

RESUMO

The Rio Doce estuary was critically impacted in 2015 by the world's largest mining tailing spill, with still unclear long-term effects on the aquatic biota. Here we present a long-term (2015 to 2020) assessment of estuarine benthic assemblages, where we demonstrate that despite a decline in the absolute concentrations of potentially toxic elements; sediment contamination is still above pre-impact conditions. The presence of these contaminants is likely responsible for a continued low habitat quality for the benthic fauna, characterized by a reduction of 96 % of the macroinvertebrate density and persistent change in the benthic assemblage composition. Our study supports previous work indicating the long-term nature of pollution impacts in estuaries, and demonstrate that although water quality levels were quickly adequate under regulatory terms, they largely lack significance to the overall ecosystem health assessment, as they are not related to the recovery of bottom- dwelling assemblages in estuarine ecosystems.


Assuntos
Ecossistema , Monitoramento Ambiental , Brasil , Qualidade da Água , Estuários
5.
PeerJ ; 11: e14992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935931

RESUMO

Background: Estuaries are transitional coastal ecosystems that are threatened by multiple sources of human pollution. In 2015, mining tailings from an upstream dam failure caused massive metal contamination that impacted benthic assemblages on the Brazilian Rio Doce estuary. Methods: In this study, we investigate and compare meiofaunal assemblages with eDNA metabarcoding 1.7 years (2017) and 2.8 years (2018) after the initial contamination by mine tailings in order to evaluate the continued impact of sediment mine tailing contaminants on the structure of benthic assemblages after the disaster. Results: The community was dominated by Arthropoda and Nematoda 1.7 yr after the impacts (42 and 29% of meiofaunal sequence reads, respectively) but after 2.8 years Arthropoda (64.8% of meiofaunal sequence reads) and Rotifera (11.8%) were the most common taxa. This continued impact on meiofaunal assemblage revealed a lower phylogenetic diversity (7.8-fold) in 2018, despite overall decrease in metal concentration (Al, Ba, Cr, As, Fe, Zn, Mn, Pb, Cd, Co) in sediments. Our data suggests that differences in benthic assemblages and loss of diversity may be influenced by contaminants in sediments of this estuary, and indicate that broad eDNA assessments are greatly useful to understand the full range of biodiversity changes in dynamic estuarine ecosystems.


Assuntos
Desastres , Ecossistema , Animais , Humanos , Filogenia , Sedimentos Geológicos/química , Monitoramento Ambiental , Metais , Mineração
6.
Sci Rep ; 12(1): 22392, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575210

RESUMO

Seabirds are known to play an important role in the geochemical cycling of macronutrients; however, their role in cycling elements of environmental interest has not been investigated. Guano is an important source of marine-derived nutrients and trace metals in seabird nesting areas, but most of the available information on this topic is derived from local studies. In the present study, we used a bioenergetic model to estimate the amounts of cadmium (Cd), mercury (Hg) and lead (Pb) that are deposited via faecal material in seabird colonies worldwide. The findings showed that the seabirds excreted 39.3 Mg (Mg = metric ton or 1000 kg) of Cd, 35.7 Mg of Hg and 27.2 Mg of Pb annually. These amounts are of the same order of magnitude as those reported for other fluxes considered in the geochemical cycling of these elements (e.g. sea-salt spray, cement production, soil loss to oceans). Most of the deposition occurs in circumpolar zones in both hemispheres and, interestingly, high proportions of the metals in the excrements occur in geochemically labile forms, which can be easily leached into coastal waters and assimilated by marine organisms.


Assuntos
Mercúrio , Metais Pesados , Oligoelementos , Animais , Cádmio , Chumbo , Aves , Oligoelementos/análise , Monitoramento Ambiental , Metais Pesados/análise
7.
Curr Biol ; 32(16): 3636-3640.e2, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35863350

RESUMO

Both freshwater floodplain (várzeas and igapós) forests and brackish-saline mangroves are abundant and well-described ecosystems in Brazil.1 However, an interesting and unique wetland forest exists in the Amazon Delta where extensive mangroves occur in essentially freshwater tidal environments. Unlike the floodplain forests found upriver, the hydrology of these ecosystems is driven largely by large macro-tides of 4-8 m coupled with the significant freshwater discharge from the Amazon River. We explored these mangroves on the Amazon Delta (00°52' N to 01°41' N) and found surface water salinity to be consistently <5; soil pore water salinity in these mangrove forests ranged from 0 nearest the Amazon mouth to only 5-11 at the coastal margins to the north (01°41' N, 49°55' W). We also recorded a unique mix of mangrove-obligate (Avicennia sp., Rhizophora mangle) and facultative-wetland species (Mauritia flexuosa, Pterocarpus sp.) dominating these forests. This unique mix of plant species and soil porewater chemistry exists even along the coastal strands and active coastlines of the Atlantic Ocean. Part of these unique mangroves have escaped current global satellite mapping efforts, and we estimate that they may add over 180 km2 (20% increase in mangrove area) within the Amazon Delta. Despite having a unique structure and function, these freshwater-brackish ecosystems likely provide similar ecosystem services to most mangroves worldwide, such as sequestering large quantities of organic carbon, protection of shoreline ecosystems from erosion, and habitats to many terrestrial and aquatic species (monkeys, birds, crabs, and fish).


Assuntos
Avicennia , Ecossistema , Animais , Solo/química , Água , Áreas Alagadas
8.
Mar Pollut Bull ; 172: 112912, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34526261

RESUMO

After the largest mining tailings spill in Brazil, the Rio Doce estuarine ecosystem was severely impacted by metal contamination. In a 28-day laboratory experiment, we examined the effects of the polychaeta Laeonereis sp. on fluxes of oxygen and metal across the sediment-water interface. The density-dependent effect of Laeonereis sp. in the oxygen and metal fluxes was tested at low and high (74 and 222 ind m-2, respectively) densities, and compared with defaunated controls. The higher worm density had an amplified effect on the oxygen flux, sediment uptake of Al and Mn, and Fe oxidation compared with the control, but no significant effects on other metals (Ba, Cd, Co, Cr, Cu, Ni, and Zn). Higher worm density increased the oxidation of Fe phases, but no effect in the solid phase of other metals. Consequently, Laeonereis sp. bioturbation prevents the reduction of Fe phases and the release of metal-bound-contaminants to estuarine systems.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais/análise , Metais Pesados/análise , Mineração , Poluentes Químicos da Água/análise
9.
J Environ Manage ; 297: 113381, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325365

RESUMO

Drought events may induce mangrove mortality and dieback events worldwide as a result of climate extremes. As mangroves sequester large quantities of carbon, quantifying the losses of these stocks following climate disturbances may guide wetland governance strategies globally. In Southeast Brazil, we determined the total ecosystem carbon stocks (TECS) of pristine mangroves that were up to 1851 Mg of carbon per hectare (Mg C ha-1), which are the highest stocks measured from South American and raising estimates of Brazil's mangrove TECS to 0.52 Pg C. A mangrove mortality event in the same estuary resulted in a 14.6 % decrease in TECS (270.5 Mg C ha-1) and loss of 20 % of mangrove soil carbon within less than 2-years. Carbon dioxide emissions from this impact were 992.8 Mg CO2e ha-1, which are slightly lower than emissions from land use disturbances on mangroves worldwide. Our results suggest that climate effects on mangroves can become significant sources of greenhouse gases globally.


Assuntos
Ecossistema , Áreas Alagadas , Brasil , Sequestro de Carbono , Mudança Climática , Solo
10.
Mar Pollut Bull ; 166: 112267, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33752157

RESUMO

The role of Fe oxyhydroxides dynamic on metal bioavailability was studied in the Rio Doce estuary after the largest mining disaster in the world. Soon after the disaster in 2015, metals were associated with Fe oxyhydroxides under a redox-active estuarine environment. Our results indicate that organic matter inputs from plant colonization on deposited tailings over estuarine soils led to a reductive dissolution of Fe oxyhydroxides within two years. Soil pseudo-total Fe content decreased by 70% between 2015 and 2017, while the total metal contents (Cr, Cu, Ni, Pb, and Zn) decreased by 79% in the soil. The losses of Fe and metals coupled to changes in Fe oxides crystallinity reveal a future ephemeral control of Fe oxyhydroxides over metal immobilization. Our results suggest a potential chronic contamination at the estuary and points to an aggravating scenario for the following years due to the increasing dominance of poorly crystalline Fe oxyhydroxides.


Assuntos
Desastres , Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Estuários , Metais/análise , Metais Pesados/análise , Mineração , Solo , Poluentes do Solo/análise
11.
Environ Int ; 146: 106284, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264733

RESUMO

Manganese (Mn) is an abundant element in terrestrial and coastal ecosystems and an essential micronutrient in the metabolic processes of plants and animals. Mn is generally not considered a potentially toxic element due to its low content in both soil and water. However, in coastal ecosystems, the Mn dynamic (commonly associated with the Fe cycle) is mostly controlled by redox processes. Here, we assessed the potential contamination of the Rio Doce estuary (SE Brazil) by Mn after the world's largest mine tailings dam collapse, potentially resulting in chronic exposure to local wildlife and humans. Estuarine soils, water, and fish were collected and analyzed seven days after the arrival of the tailings in 2015 and again two years after the dam collapse in 2017. Using a suite of solid-phase analyses including X-ray absorption spectroscopy and sequential extractions, our results indicated that a large quantity of MnII arrived in the estuary in 2015 bound to Fe oxyhydroxides. Over time, dissolved Mn and Fe were released from soils when FeIII oxyhydroxides underwent reductive dissolution. Due to seasonal redox oscillations, both Fe and Mn were then re-oxidized to FeIII, MnIII, and MnIV and re-precipitated as poorly crystalline Fe oxyhydroxides and poorly crystalline Mn oxides. In 2017, redox conditions (Eh: -47 ± 83 mV; pH: 6.7 ± 0.5) favorable to both Fe and Mn reduction led to an increase (~880%) of dissolved Mn (average for 2015: 66 ± 130 µg L-1; 2017: 582 ± 626 µg L-1) in water and a decrease (~75%, 2015: 547 ± 498 mg kg-1; 2017: 135 ± 80 mg kg-1) in the total Mn content in soils. The crystalline Fe oxyhydroxides content significantly decreased while the fraction of poorly ordered Fe oxides increased in the soils limiting the role of Fe in Mn retention. The high concentration of dissolved Mn found within the estuary two years after the arrival of mine tailings indicates a possible chronic contamination scenario, which is supported by the high levels of Mn in two species of fish living in the estuary. Our work suggests a high risk to estuarine biota and human health due to the rapid Fe and Mn biogeochemical dynamic within the impacted estuary.


Assuntos
Manganês , Colapso Estrutural , Animais , Brasil , Ecossistema , Compostos Férricos , Humanos , Oxirredução , Solo
12.
J Environ Manage ; 278(Pt 2): 111575, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33147526

RESUMO

The availability of phosphorus (P) in estuarine ecosystems is ultimately controlled by the nature of interactions between dissolved P and the soil components (e.g., soil minerals), especially iron (Fe) oxyhydroxides. P retention on Fe oxyhydroxides and its subsequent availability depends on mineral crystallinity and susceptibility to dissolution. However, in estuarine soils, geochemical conditions (e.g., redox oscillation and high soil organic matter content) may alter the fate of P and decrease the environmental quality of estuarine waters. The large input of Fe-rich tailings into the Rio Doce Estuary in Brazil in 2015 after a rupture of a Fe ore tailings dam (i.e., "Mariana mine disaster") offers a unique framework to evaluate the Fe oxyhydroxides role in P availability in estuarine soils, their potential effects on the cycling of P and eutrophication. We observed a significant correlation between Fe minerals and the P content in the estuary soils, suggesting that P enrichment was promoted by the deposited Fe-rich tailings. Adsorption isotherm curves indicated that mine tailings had a strong affinity for P due to presence of crystalline Fe oxyhydroxides in the tailings. Significant losses of Fe (62%) and P (56%) from the estuarine soil was observed two years after the initial impact and in response to redox conditions oscillations. Additionally, the content of high crystallinity Fe oxyhydroxides decreased significantly, whereas that of low crystallinity Fe oxyhydroxides showed an increase over time. These changes were associated with the dissimilatory Fe reduction, which led an increase in the concentrations of readily available P (2015: 2.30 ± 0.41 mg kg-1; 2017: 3.83 ± 1.82 mg kg-1; p < 0.001) in the studied soils. Moreover, in 2017, the dissolved P content exceeded the recommended environmental safety limits by five times. Our results indicate that Fe oxyhydroxides are a continuous source of dissolved P for the ecosystem, and Fe-rich tailings deposited in the estuarine ecosystem may be linked to a potential eutrophication.


Assuntos
Fósforo , Solo , Brasil , Ecossistema , Ferro
13.
PeerJ ; 8: e10266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194429

RESUMO

BACKGROUND: The Rio Doce estuary, in Brazil, was impacted by the deposition of iron mine tailings, caused by the collapse of a dam in 2015. Based on published baseline datasets, the estuary has been experiencing chronic trace metal contamination effects since 2017, with potential bioaccumulation in fishes and human health risks. As metal and metalloid concentrations in aquatic ecosystems pose severe threats to the aquatic biota, we hypothesized that the trace metals in estuarine sediments nearly two years after the disaster would lead to bioaccumulation in demersal fishes and result in the biosynthesis of metal-responsive proteins. METHODS: We measured As, Cd, Cr, Cu, Fe, Mn, Pb, Se and Zn concentrations in sediment samples in August 2017 and compared to published baseline levels. Also, trace metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Se and Zn) and protein (metallothionein and reduced glutathione) concentrations were quantified in the liver and muscle tissues of five fish species (Cathorops spixii, Genidens genidens, Eugerres brasilianus, Diapterus rhombeus and Mugil sp.) from the estuary, commonly used as food sources by local populations. RESULTS: Our results revealed high trace metal concentrations in estuarine sediments, when compared to published baseline values for the same estuary. The demersal fish species C. spixii and G. genidens had the highest concentrations of As, Cr, Mn, Hg, and Se in both, hepatic and muscle, tissues. Trace metal bioaccumulation in fish was correlated with the biosynthesis of metallothionein and reduced glutathione in both, liver and muscle, tissues, suggesting active physiological responses to contamination sources. The trace metal concentrations determined in fish tissues were also present in the estuarine sediments at the time of this study. Some elements had concentrations above the maximum permissible limits for human consumption in fish muscles (e.g., As, Cr, Mn, Se and Zn), suggesting potential human health risks that require further studies. Our study supports the high biogeochemical mobility of toxic elements between sediments and the bottom-dwelling biota in estuarine ecosystems.

14.
Integr Environ Assess Manag ; 16(5): 655-660, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32048802

RESUMO

The rupture of a mining dam in southeastern Brazil in 2015 was the country's greatest environmental tragedy. In order to evaluate the ecological risks of the mine tailings on the Rio Doce estuary, this study assessed trace metal contamination and sediment quality indices up to 2.9 y after the dam rupture. Surface sediments were collected from 17 stations on the Rio Doce estuary and Cd, Pb, Cr, Zn, Cu, and As concentrations were determined by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Four ecological risk indices (modified contamination degree [mCd], pollution load index [PLI], risk index [RI], and sediment quality guideline quotient [SQG-Q]) suggest a high risk by metal contamination with possible adverse biological effects, with moderate seasonal variability. Based on a precautionary approach, our results support fisheries closures and the need for public health monitoring in the affected areas, and support other studies that suggest chronic metal contamination of the Rio Doce estuary. Integr Environ Assess Manag 2020;16:655-660. © 2020 SETAC.


A ruptura de uma barragem de mineração no sudeste do Brasil em 2015 causou a maior tragédia ambiental do país. Para avaliar os riscos ecológicos dos rejeitos de minério no estuário do Rio Doce, este estudo avaliou os índices de contaminação por metais traços e qualidade dos sedimentos até 2,9 anos após a ruptura da barragem. Os sedimentos de superfície foram coletados em 17 estações no estuário do Rio Doce e as concentrações de Cd, Pb, Cr, Zn, Cu e As foram determinadas por ICP-OES. Quatro índices de risco ecológico (mCd, PLI, RI e SQG-Q) sugerem um alto risco de contaminação por metais com possíveis efeitos biológicos adversos, com variabilidade sazonal moderada. Com base em uma abordagem preventiva, nossos resultados apoiam o fechamento da pesca e a necessidade de monitoramento da saúde pública nas áreas afetadas, além de apoiar outros estudos que sugerem contaminação crônica por metais no estuário do Rio Doce. Integr Environ Assess Manag 2020;16:655-660.


Assuntos
Metaloides , Metais Pesados , Poluentes Químicos da Água , Brasil , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
PeerJ ; 7: e8042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31720128

RESUMO

Mine tailing disasters have occurred worldwide and contemporary release of tailings of large proportions raise concerns of the chronic impacts that trace metals may have on the aquatic biodiversity. Environmental metabarcoding (eDNA) offers an as yet poorly explored opportunity for biological monitoring of impacted aquatic ecosystems from mine tailings and contaminated sediments. eDNA has been increasingly recognized to be an effective method to detect previously unrecognized small-sized Metazoan taxa, but their ecological responses to environmental pollution has not been assessed by metabarcoding. Here, we evaluated chronic effects of trace metal contamination from sediment eDNA of the Rio Doce estuary, 1.7 years after the Samarco mine tailing disaster, which released over 40 million m3 of iron tailings in the Rio Doce river basin. We identified 123 new sequence variants environmental taxonomic units (eOTUs) of benthic taxa and an assemblage composition dominated by Nematoda, Crustacea and Platyhelminthes; typical of other estuarine ecosystems. We detected environmental filtering on the meiofaunal assemblages and multivariate analysis revealed strong influence of Fe contamination, supporting chronic impacts from mine tailing deposition in the estuary. This was in contrast to environmental filtering of meiofaunal assemblages of non-polluted estuaries. Here, we suggest that the eDNA metabarcoding technique provides an opportunity to fill up biodiversity gaps in coastal marine ecology and may become a valid method for long term monitoring studies in mine tailing disasters and estuarine ecosystems with high trace metals content.

16.
Environ Geochem Health ; 41(2): 603-615, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30022342

RESUMO

This study aimed to evaluate mine water reuse, elucidating the potential problems related to trace metal biogeochemistry focusing on Cu dynamics in water, soil, and plants. Water samples were collected from a Cu mine and a reservoir used to store mine water. Additional samples were taken from soils from an uncultivated area and a banana orchard (irrigated with mine water for at least 10 years) and plant from the irrigated area. The following parameters were analyzed: pH, redox potential, dissolved ions in water samples (e.g., Ca2+, Mg2+, Na+, K+, Cu2+, SO 4 2- , and Cl-), bioavailable Cu and Cu solid-phase fractionation (in soils and reservoir sediments samples), as well as Cu content in banana plants. Mine water presents high dissolved Cu concentration (mean 2.3 ± 0.0 mg L-1), limiting its use for irrigation. Water storage at the reservoir increased water quality, reducing dissolved Cu concentration (mean 0.2 ± 0.0 mg L-1), due to adsorption/precipitation as carbonates (mean 131.8 ± 24.6 mg kg-1), organic matter (mean 1526.2 ± 4.7 mg kg-1) and sulfides (mean 158.4 ± 56.9 mg kg-1). Despite higher water quality at the reservoir, the use of mine water increased the amount of bioavailable Cu in soils, which was primarily associated with organic matter. Increased bioavailable Cu in the soil did not increase the Cu content of banana leaves but resulted in high Cu content of roots and fruit, increasing the risk of toxicity for the population.


Assuntos
Irrigação Agrícola/métodos , Cobre/análise , Cobre/farmacocinética , Mineração , Musa/química , Disponibilidade Biológica , Brasil , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Metais/análise , Musa/efeitos dos fármacos , Musa/metabolismo , Medição de Risco/métodos , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética , Qualidade da Água
17.
Biol Lett ; 14(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185605

RESUMO

In addition to the largest existing expanse of tropical forests, the Brazilian Amazon has among the largest area of mangroves in the world. While recognized as important global carbon sinks that, when disturbed, are significant sources of greenhouse gases, no studies have quantified the carbon stocks of these vast mangrove forests. In this paper, we quantified total ecosystem carbon stocks of mangroves and salt marshes east of the mouth of the Amazon River, Brazil. Mean ecosystem carbon stocks of the salt marshes were 257 Mg C ha-1 while those of mangroves ranged from 361 to 746 Mg C ha-1 Although aboveground mass was high relative to many other mangrove forests (145 Mg C ha-1), soil carbon stocks were relatively low (340 Mg C ha-1). Low soil carbon stocks may be related to coarse textured soils coupled with a high tidal range. Nevertheless, the carbon stocks of the Amazon mangroves were over twice those of upland evergreen forests and almost 10-fold those of tropical dry forests.


Assuntos
Carbono/análise , Solo/química , Áreas Alagadas , Brasil , Ecossistema
18.
Ecol Evol ; 8(11): 5530-5540, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938071

RESUMO

Mangroves of the semiarid Caatinga region of northeastern Brazil are being rapidly converted to shrimp pond aquaculture. To determine ecosystem carbon stocks and potential greenhouse gas emissions from this widespread land use, we measured carbon stocks of eight mangrove forests and three shrimp ponds in the Acaraú and Jaguaribe watersheds in Ceará state, Brazil. The shrimp ponds were paired with adjacent intact mangroves to ascertain carbon losses and potential emissions from land conversion. The mean total ecosystem carbon stock of mangroves in this semiarid tropical landscape was 413 ± 94 Mg C/ha. There were highly significant differences in the ecosystem carbon stocks between the two sampled estuaries suggesting caution when extrapolating carbon stock across different estuaries even in the same landscape. Conversion of mangroves to shrimp ponds resulted in losses of 58%-82% of the ecosystem carbon stocks. The mean potential emissions arising from mangrove conversion to shrimp ponds was 1,390 Mg CO2e/ha. Carbon losses were largely from soils which accounted for 81% of the total emission. Losses from soils >100 cm in depth accounted for 33% of the total ecosystem carbon loss. Soil carbon losses from shrimp pond conversion are equivalent to about 182 years of soil carbon accumulation. Losses from mangrove conversion are about 10-fold greater than emissions from conversion of upland tropical dry forest in the Brazilian Caatinga underscoring the potential value for their inclusion in climate change mitigation activities.

19.
Sci Total Environ ; 637-638: 498-506, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29754084

RESUMO

In November 2015, the largest socio-environmental disaster in the history of Brazil occurred when approximately 50 million m3 of mine tailings were released into the Doce River (SE Brazil), during the greatest failure of a tailings dam worldwide. The mine tailings passed through the Doce River basin, reaching the ecologically important estuary 17 days later. On the arrival of the mine wastes to the coastal area, contamination levels in the estuarine soils were measured to determine the baseline level of contamination and to enable an environmental risk assessment. Soil and tailings samples were collected and analyzed to determine the redox potential (Eh), pH, grain size and mineralogical composition, total metal contents (Fe, Mn, Cr, Zn, Ni, Cu, Pb and Co) and organic matter content. The metals were fractionated to elucidate the mechanisms governing the trace metal dynamics. The mine tailings are mostly composed of Fe (mean values for Fe: 45,200 ±â€¯2850; Mn: 433 ±â€¯110; Cr: 63.9 ±â€¯15.1; Zn: 62.4 ±â€¯28.4; Ni: 24.7 ±â€¯10.4; Cu: 21.3 ±â€¯4.6; Pb: 20.2 ±â€¯4.6 and Co: 10.7 ±â€¯4.8 mg kg-1), consisting of Fe-oxyhydroxides (goethite, hematite); kaolinite and quartz. The metal contents of the estuarine soils, especially the surface layers, indicate trace metal enrichment caused by the tailings. However, the metal contents were below threshold levels reported in Brazilian environmental legislation. Despite the fact that only a small fraction (<2%) of the metals identified are readily bioavailable (i.e. soluble and exchangeable fraction), trace metals associated with Fe oxyhydroxides contributed between 69.8 and 87.6% of the total contents. Control of the trace metal dynamics by Fe oxyhydroxides can be ephemeral, especially in wetland soils in which the redox conditions oscillate widely. Indeed, the physicochemical conditions (Eh < 100 mV and circumneutral pH) of estuarine soils favor Fe reduction microbial pathways, which will probably increase the trace metal bioavailability and contamination risk.


Assuntos
Vazamento de Resíduos Químicos , Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Brasil , Desastres , Metais , Mineração
20.
Sci Total Environ ; 542(Pt A): 685-93, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546764

RESUMO

The soil attributes controlling the CO2, and CH4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCSEQV); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO2 and CH4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO2 emission. The CH4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...