Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(10): e202301207, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688779

RESUMO

Plants from Salacia genus are used in traditional medicine for a wide range of diseases. Previous studies reported bioactive pentacyclic triterpenoids from S. elliptica leaves and branches. In this study, the novel pentacyclic triterpenoid 7α,15α-dihydroxyfriedelan-3-one (1) was obtained from the roots of Salacia elliptica, along with seven known compounds: friedelan-3-one (2), friedelan-3ß-ol (3), friedelan-1,3-dione (4), friedelan-3,15-dione (5), 15α-hydroxyfriedelan-3-one (6), 15α,26-dihydroxyfriedelan-3-one (7), and 26-hydroxyfriedelan-3,15-dione (8). Additionally, one steroid, spinasterol (9), was also identified. The chemical structures of all compounds were established through 1 H and 13 C-NMR. Compound 1 was analysed by additional 2D experiments (HMBC, HSQC, COSY, and NOESY) for complete elucidation. Furthermore, the cytotoxicity of compounds 2, 3, 6, 7 and 8 against the A549 lung cancer cells model was evaluated. The flow cytometry analysis revealed a significant cytotoxic activity similar to that exhibited by the triterpenoid lupeol. Additionally, compounds 2, 3, 6, and 7 were tested for in vitro antifungal activity against Candida, Cryptococcus and Sporothrix strains. However, all compounds showed no activity at the tested concentrations.

2.
Chemosphere ; 302: 134808, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35508259

RESUMO

The presence of emerging contaminants, such as pharmaceuticals and personal care products (PPCPs), in aquatic environments has received increasing attention in the last years due to the various possible impacts on the dynamics of the natural environment and human health. In global terms, around 771 active pharmaceutical substances or their transformation products have been detected at levels above their respective detection limit. Additionally, 528 different compounds have been detected in 159 countries. Seeking to overcome potential ecotoxicological problems, several studies have been conducted using different technologies for PPCPs removal. Recently, the use of macro, microalgae, and aquatic macrophytes has been highlighted due to the excellent bioremediation capacity of these organisms and easy acclimatization. Thus, the present review aims to outline a brief and well-oriented scenario concerning the knowledge about the bioremediation alternatives of PPCPs through the use of macro, microalgae, and aquatic macrophytes. The characteristics of PPCPs and the risks of these compounds to the environment and human health are also addressed. Moreover, the review indicates the opportunities and challenges for expanding the use of biotechnologies based on algae and aquatic macrophytes, such as studies dedicated to relate the operational criteria of these biotechnologies with the main PPCPs removal mechanisms. Finally, algae and macrophytes can compose green and ecological biotechnologies for wastewater treatment, having great contribution to PPCPs removal.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Cosméticos/análise , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Águas Residuárias/análise , Poluentes Químicos da Água/análise
3.
Biomed Pharmacother ; 131: 110695, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32920512

RESUMO

The unique properties of polymer-hybrid nanosystems enable them to play an important role in different fields such as biomedical applications. Hybrid materials, which are formed by polymer and inorganic- or organic-base systems, have been the focus of many recently published studies whose results have shown outstanding improvements in drug targeting. The development of hybrid polymer materials can avoid the synthesis of new molecules, which is an overall expensive process that can take several years to get to the proper elaboration and approval. Thus, the combination of properties in a single hybrid system can have several advantages over non-hybrid platforms, such as improvements in circulation time, structural disintegration, high stability, premature release, low encapsulation rate and unspecific release kinetics. Thus, the aim of the present review is to outline a rapid and well-oriented scenario concerning the knowledge about polymer-hybrid nanoparticles use in biomedical platforms. Furthermore, the ultimate methodologies adopted in synthesis processes, as well as in applications in vitro/in vivo, are the focus of this review.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Polimerização , Polímeros/síntese química
4.
J Drug Target ; 27(4): 355-366, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30010436

RESUMO

Protein-polymer conjugates have achieved tremendous attention in the last few years, since their importance in diverse fields including drug delivery, biotechnology and nanotechnology. Over the past few years, numerous chemical strategies have been developed to conjugate different synthetic polymers onto proteins and great progress has been made. Currently, there are a handful of therapeutic polymer conjugates that have been approved by the FDA, while many hundreds of products are under extensive clinical trials and preclinical development phases. In this way, the development of novel techniques for conjugation, especially living radical polymerisation (LRP) has greatly enhanced the potential to broaden the scope of therapeutic conjugates. As a consequence, versatile techniques have developed, such as the 'grafting from' approach, which allows modifications of biomacromolecules at the atomic level, and subsequently preparing well-defined stimuli-responsive conjugates. These strategies present a unique perspective for therapy expansion of a new generation of 'smart' products with proprieties that can be finely controlled and tuned rather than just enhanced. This article highlights recent advances in the synthesis and application of protein-polymer conjugates by controlled radical polymerisation techniques, with special emphasis on stimuli-responsive conjugates on new applications in biomedical and pharmaceutical areas.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros/química , Proteínas/administração & dosagem , Animais , Biotecnologia , Desenvolvimento de Medicamentos , Humanos , Nanotecnologia
5.
J Drug Target ; 26(9): 806-817, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29353521

RESUMO

Angiogenesis, the complex process of formation of new blood vessels from pre-existing blood vessels, which involves the participation of several pro- and anti-angiogenic factors, is implicated in many physiological and pathological conditions. Nanoparticle-based anti-angiogenic activity at the tumour tissue, harnessed by the Enhanced Permeability and Retention Effect (EPR effect), could potentially become a breakthrough therapy to halt tumour progression. Herein, we evaluate the anti-angiogenic effect of ZnWO4 nanoparticles (NPs). The nanoparticles were obtained by microwave-assisted hydrothermal synthesis (MAHS) at 120 °C for 60 min and were structurally characterised by X-ray diffraction (XRD) and micro-Raman (MR) spectroscopy. The mean size and polydispersity index were estimated by Zeta potential analysis. The XRD analysis revealed structural organisation at a long-range order, with an average crystallite size of around 3.67 nm, while MR revealed short-range order for ZnWO4. The anti-angiogenic potential of zinc tungstate nanoparticles was investigated through the chorioallantoic membrane assay (CAM) using fertilised chicken eggs. We demonstrate, in an unprecedented way, that nanocrystalline ZnWO4 NPs obtained by MAHS, at low reaction temperatures, showed excellent anti-angiogenic properties even at low concentrations. The ZnWO4 NPs were further evaluated for its cytotoxicity in vitro.


Assuntos
Inibidores da Angiogênese/farmacologia , Nanopartículas Metálicas/química , Micro-Ondas , Óxidos/farmacologia , Tungstênio/farmacologia , Zinco/química , Células HEK293 , Humanos , Óxidos/química , Tungstênio/química
6.
J Drug Target ; 26(7): 592-603, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29098881

RESUMO

Despite advances in the development of new therapeutic agents and diagnostic imaging techniques, the 5-year survival of osteosarcoma, the most common type of bone cancer, remains practically unaltered for the last three decades at around 60%. Nanoparticle-based carriers have emerged as new class of drug delivery systems that could potentially overcome conventional chemotherapy limitations, by promoting a better drug biodistribution profile by allowing a preferential accumulation of the drug in the desired tissue, while minimising non-targeted tissue toxicity, thus resulting in an improved overall therapeutic effectiveness. Hydroxyapatite nanoparticles (HANP) are known to be biocompatible and non-immunogenic and have shown to be preferentially accumulated in bone tissues being considered a promising carrier to bone tissues. Herein, we successfully synthesised mesoporous hydroxyapatite nanoparticles with mean size of 285.32 ± 10.29 nm and superficial area of 103.5 m2/g, containing significant quantities of chemotherapeutic drug vincristine. A spectrophotometric method was developed and validated aiming to quantify the vincristine (VCR)-loaded in nanoparticles. Chorioallantoic membrane assay revealed relevant anti-angiogenic activity of system, leading to accentuated reduction in the number of blood vessels in fertilised eggs. Findings presented in this paper suggested that VCR-loaded HANP has a promising future as a nanocarrier for bone cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Durapatita/química , Nanopartículas/química , Vincristina/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Humanos , Distribuição Tecidual , Vincristina/farmacocinética , Vincristina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...