Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(27): 14981-14988, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33830603

RESUMO

Water oxidation is a crucial reaction for renewable energy conversion and storage. Among the alkaline oxygen evolution reaction (OER) catalysts, NiFe based oxyhydroxides show the highest catalytic activity. However, the details of their OER mechanism are still unclear, due to the elusive nature of the OER intermediates. Here, using a novel differential electrochemical mass spectrometry (DEMS) cell interface, we performed isotope-labelling experiments in 18 O-labelled aqueous alkaline electrolyte on Ni(OH)2 and NiFe layered double hydroxide nanocatalysts. Our experiments confirm the occurrence of Mars-van-Krevelen lattice oxygen evolution reaction mechanism in both catalysts to various degrees, which involves the coupling of oxygen atoms from the catalyst and the electrolyte. The quantitative charge analysis suggests that the participating lattice oxygen atoms belong exclusively to the catalyst surface, confirming DFT computational hypotheses. Also, DEMS data suggest a fundamental correlation between the magnitude of the lattice oxygen mechanism and the faradaic efficiency of oxygen controlled by pseudocapacitive oxidative metal redox charges.

2.
Nat Commun ; 12(1): 794, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542208

RESUMO

Cu oxides catalyze the electrochemical carbon dioxide reduction reaction (CO2RR) to hydrocarbons and oxygenates with favorable selectivity. Among them, the shape-controlled Cu oxide cubes have been most widely studied. In contrast, we report on novel 2-dimensional (2D) Cu(II) oxide nanosheet (CuO NS) catalysts with high C2+ products, selectivities (> 400 mA cm-2) in gas diffusion electrodes (GDE) at industrially relevant currents and neutral pH. Under applied bias, the (001)-orientated CuO NS slowly evolve into highly branched, metallic Cu0 dendrites that appear as a general dominant morphology under electrolyte flow conditions, as attested by operando X-ray absorption spectroscopy and in situ electrochemical transmission electron microscopy (TEM). Millisecond-resolved differential electrochemical mass spectrometry (DEMS) track a previously unavailable set of product onset potentials. While the close mechanistic relation between CO and C2H4 was thereby confirmed, the DEMS data help uncover an unexpected mechanistic link between CH4 and ethanol. We demonstrate evidence that adsorbed methyl species, *CH3, serve as common intermediates of both CH3H and CH3CH2OH and possibly of other CH3-R products via a previously overlooked pathway at (110) steps adjacent to (100) terraces at larger overpotentials. Our mechanistic conclusions challenge and refine our current mechanistic understanding of the CO2 electrolysis on Cu catalysts.

3.
Chem Commun (Camb) ; 55(6): 818-821, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30574958

RESUMO

We present an unusual, yet facile, strategy towards formation of physically mixed Ni-Fe(OxHy) oxygen evolution electrocatalysts. We use in situ X-ray absorption and UV-vis spectroscopy, and high-resolution imaging to demonstrate that physical contact between two inferior Ni(OH)2 and Fe(OOH) catalysts self-assemble into atomically intermixed Ni-Fe catalysts with unexpectedly high activity.

4.
J Am Chem Soc ; 139(5): 2070-2082, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28080038

RESUMO

Ni-Fe oxyhydroxides are the most active known electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolytes and are therefore of great scientific and technological importance in the context of electrochemical energy conversion. Here we uncover, investigate, and discuss previously unaddressed effects of conductive supports and the electrolyte pH on the Ni-Fe(OOH) catalyst redox behavior and catalytic OER activity, combining in situ UV-vis spectro-electrochemistry, operando electrochemical mass spectrometry (DEMS), and in situ cryo X-ray absorption spectroscopy (XAS). Supports and pH > 13 strongly enhanced the precatalytic voltammetric charge of the Ni-Fe oxyhydroxide redox peak couple, shifted them more cathodically, and caused a 2-3-fold increase in the catalytic OER activity. Analysis of DEMS-based faradaic oxygen efficiency and electrochemical UV-vis traces consistently confirmed our voltammetric observations, evidencing both a more cathodic O2 release and a more cathodic onset of Ni oxidation at higher pH. Using UV-vis, which can monitor the amount of oxidized Ni+3/+4 in situ, confirmed an earlier onset of the redox process at high electrolyte pH and further provided evidence of a smaller fraction of Ni+3/+4 in mixed Ni-Fe centers, confirming the unresolved paradox of a reduced metal redox activity with increasing Fe content. A nonmonotonic super-Nernstian pH dependence of the redox peaks with increasing Fe content-displaying Pourbaix slopes as steep as -120 mV/pH-suggested a two proton-one electron transfer. We explain and discuss the experimental pH effects using refined coupled (PCET) and decoupled proton transfer-electron transfer (PT/ET) schemes involving negatively charged oxygenate ligands generated at Fe centers. Together, we offer new insight into the catalytic reaction dynamics and associated catalyst redox chemistry of the most important class of alkaline OER catalysts.

5.
J Am Chem Soc ; 138(38): 12552-63, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27549910

RESUMO

Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

6.
J Am Chem Soc ; 138(17): 5603-14, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27031737

RESUMO

Mixed Ni-Fe oxides are attractive anode catalysts for efficient water splitting in solar fuels reactors. Because of conflicting past reports, the catalytically active metal redox state of the catalyst has remained under debate. Here, we report an in operando quantitative deconvolution of the charge injected into the nanostructured Ni-Fe oxyhydroxide OER catalysts or into reaction product molecules. To achieve this, we explore the oxygen evolution reaction dynamics and the individual faradaic charge efficiencies using operando differential electrochemical mass spectrometry (DEMS). We further use X-ray absorption spectroscopy (XAS) under OER conditions at the Ni and Fe K-edges of the electrocatalysts to evaluate oxidation states and local atomic structure motifs. DEMS and XAS data consistently reveal that up to 75% of the Ni centers increase their oxidation state from +2 to +3, while up to 25% arrive in the +4 state for the NiOOH catalyst under OER catalysis. The Fe centers consistently remain in the +3 state, regardless of potential and composition. For mixed Ni100-xFex catalysts, where x exceeds 9 atomic %, the faradaic efficiency of O2 sharply increases from ∼30% to 90%, suggesting that Ni atoms largely remain in the oxidation state +2 under catalytic conditions. To reconcile the apparent low level of oxidized Ni in mixed Ni-Fe catalysts, we hypothesize that a kinetic competition between the (i) metal oxidation process and the (ii) metal reduction step during O2 release may account for an insignificant accumulation of detectable high-valent metal states if the reaction rate of process (ii) outweighs that of (i). We conclude that a discussion of the superior catalytic OER activity of Ni-FeOOH electrocatalysts in terms of surface catalysis and redox-inactive metal sites likely represents an oversimplification that fails to capture essential aspects of the synergisms at highly active Ni-Fe sites.

7.
ChemSusChem ; 8(11): 1908-15, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25958795

RESUMO

Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm(-2) .


Assuntos
Irídio/química , Oxigênio/química , Eletroquímica , Polímeros/química , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...