Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608257

RESUMO

Clonal hematopoiesis (CH) is an age-associated phenomenon leading to increased risk of both hematologic malignancy and non-malignant organ dysfunction. Increasingly available genetic testing has made incidental discovery of CH clinically common, yet evidence-based guidelines and effective management strategies to prevent adverse CH health outcomes are lacking. To address this gap, the prospective CHIVE registry and biorepository was created to identify and monitor individuals at risk, support multidisciplinary CH clinics, and to refine standards of practice for CH risk mitigation. Data from the first 181 patients enrolled in this registry recapitulate the molecular epidemiology of CH from biobank scale retrospective studies, with DNMT3A, TET2, ASXL1, and TP53 as the most commonly mutated genes. CH patients had higher rates of end organ dysfunction, in particular chronic kidney disease (p=0.001). Among patients with CH, variant allele frequency was independently associated with presence of cytopenias (p=0.008) and progression to hematologic malignancy (p=0.010), while other common high-risk CH clone features were not clear. Notably, accumulation of multiple distinct high-risk clone features was also associated with cytopenias (p=0.013) and hematologic malignancy progression (p=0.004), supporting a recently published CH risk score. Surprisingly, ~30% of patients enrolled in CHIVE from CH clinics were adjudicated as not having CHIP, highlighting the need for molecular standards and purpose-built assays in this field. Maintenance of this well-annotated cohort and continued expansion of CHIVE to multiple institutions is underway and will be critical to understand how to thoughtfully care for this patient population.

2.
Blood Adv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507736

RESUMO

Clonal hematopoiesis (CH) is an age-associated phenomenon that increases risk for hematologic malignancy and cardiovascular disease. CH is thought to enhance disease risk through inflammation in the peripheral blood1. Here, we profile peripheral blood gene expression in 66,968 single cells from a cohort of 17 CH patients and 7 controls. Using a novel mitochondrial DNA barcoding approach, we were able to identify and separately compare mutant TET2 and DNMT3A cells to non-mutant counterparts. We discovered the vast majority of mutated cells were in the myeloid compartment. Additionally, patients harboring DNMT3A and TET2 CH mutations possessed a pro-inflammatory profile in CD14+ monocytes through previously unrecognized pathways such as galectin and macrophage Inhibitory Factor (MIF). We also found that T cells from CH patients, though mostly un-mutated, had decreased expression of GTPase of the immunity associated protein (GIMAP) genes, which are critical to T cell development, suggesting that CH impairs T cell function.

3.
Leukemia ; 35(12): 3371-3382, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34120146

RESUMO

Leukemic stem cells (LSCs) can acquire non-mutational resistance following drug treatment leading to therapeutic failure and relapse. However, oncogene-independent mechanisms of drug persistence in LSCs are incompletely understood, which is the primary focus of this study. We integrated proteomics, transcriptomics, and metabolomics to determine the contribution of STAT3 in promoting metabolic changes in tyrosine kinase inhibitor (TKI) persistent chronic myeloid leukemia (CML) cells. Proteomic and transcriptional differences in TKI persistent CML cells revealed BCR-ABL-independent STAT3 activation in these cells. While knockout of STAT3 inhibited the CML cells from developing drug-persistence, inhibition of STAT3 using a small molecule inhibitor sensitized the persistent CML cells to TKI treatment. Interestingly, given the role of phosphorylated STAT3 as a transcription factor, it localized uniquely to genes regulating metabolic pathways in the TKI-persistent CML stem and progenitor cells. Subsequently, we observed that STAT3 dysregulated mitochondrial metabolism forcing the TKI-persistent CML cells to depend on glycolysis, unlike TKI-sensitive CML cells, which are more reliant on oxidative phosphorylation. Finally, targeting pyruvate kinase M2, a rate-limiting glycolytic enzyme, specifically eradicated the TKI-persistent CML cells. By exploring the role of STAT3 in altering metabolism, we provide critical insight into identifying potential therapeutic targets for eliminating TKI-persistent LSCs.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Metaboloma , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transcriptoma , Animais , Apoptose , Feminino , Glicólise , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/genética
4.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208555

RESUMO

The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.


Assuntos
Células da Medula Óssea/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Interleucina-10/metabolismo , Células-Tronco Mesenquimais/fisiologia , Células Estromais/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Comunicação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Estromais/citologia , Células Estromais/imunologia
5.
PLoS One ; 11(4): e0153207, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27074138

RESUMO

The plasticity of AML drives poor clinical outcomes and confounds its longitudinal detection. However, the immediate impact of treatment on the leukemic and non-leukemic cells of the bone marrow and blood remains relatively understudied. Here, we conducted a pilot study of high dimensional longitudinal monitoring of immunophenotype in AML. To characterize changes in cell phenotype before, during, and immediately after induction treatment, we developed a 27-antibody panel for mass cytometry focused on surface diagnostic markers and applied it to 46 samples of blood or bone marrow tissue collected over time from 5 AML patients. Central goals were to determine whether changes in AML phenotype would be captured effectively by cytomic tools and to implement methods for describing the evolving phenotypes of AML cell subsets. Mass cytometry data were analyzed using established computational techniques. Within this pilot study, longitudinal immune monitoring with mass cytometry revealed fundamental changes in leukemia phenotypes that occurred over time during and after induction in the refractory disease setting. Persisting AML blasts became more phenotypically distinct from stem and progenitor cells due to expression of novel marker patterns that differed from pre-treatment AML cells and from all cell types observed in healthy bone marrow. This pilot study of single cell immune monitoring in AML represents a powerful tool for precision characterization and targeting of resistant disease.


Assuntos
Medula Óssea/imunologia , Quimioterapia de Indução , Leucemia Mieloide Aguda/tratamento farmacológico , Idoso , Medula Óssea/patologia , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Projetos Piloto , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...