Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
4.
J Nutr ; 152(5): 1220-1227, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34967894

RESUMO

BACKGROUND: Hot extrusion is widely used to produce iron-fortified rice, but heating may increase resistant starch and thereby decrease iron bioavailability. Cold-extruded iron-fortified rice may have higher bioavailability but has higher iron losses during cooking. Thus, warm extrusion could have nutritional benefits, but this has not been tested. Whether the addition of citric acid (CA) and trisodium citrate (TSC) counteracts any detrimental effect of high-extrusion temperature on iron bioavailability is unclear. OBJECTIVES: Our aim was to assess the effects of varying processing temperatures on the starch microstructure of extruded iron-fortified rice and resulting iron solubility and iron bioavailability. METHODS: We produced extruded iron-fortified rice grains at cold, warm, and hot temperatures (40°C, 70°C, and 90°C), with and without CA/TSC at a molar ratio of iron to CA/TSC of 1:0.3:5.5. We characterized starch microstructure using small- and wide-angle X-ray scattering and differential scanning calorimetry, assessed color over 6 mo, and measured in vitro iron solubility. In standardized rice and vegetable test meals consumed by young women (n = 22; mean age: 23 y; geometric mean plasma ferritin: 29.3 µg/L), we measured iron absorption from the fortified rice grains intrinsically labeled with 57ferric pyrophosphate (57FePP), compared with ferrous sulfate (58FeSO4) solution added extrinsically to the meals. RESULTS: Warm and hot extrusion altered starch morphology from native type A to type V and increased retrograded starch. However, extrusion temperature did not significantly affect iron solubility or iron bioavailability. The geometric mean fractional iron absorption of iron from fortified rice extruded with CA/TSC (8.2%; 95% CI: 7.9%, 11.0%) was more than twice that from extruded rice without CA/TSC (3.0%; 95% CI: 2.7%, 3.4%; P < 0.001). CONCLUSIONS: Higher extrusion temperatures did not affect iron bioavailability from extruded rice in young women, but co-extrusion of CA/TSC with FePP sharply increased iron absorption independently from extrusion temperature. This trial is registered at www.clinicaltrials.gov as NCT03703726.


Assuntos
Ferro , Oryza , Adulto , Disponibilidade Biológica , Feminino , Alimentos Fortificados , Temperatura Alta , Humanos , Isótopos , Oryza/química , Amido , Temperatura , Adulto Jovem
5.
Arch. bronconeumol. (Ed. impr.) ; 57(12): 757-763, dic. 2021. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-212447

RESUMO

Pulmonary involvement in COVID-19 is frequently associated with alterations in oxygenation. The arterial partial pressure of oxygen (PaO2) is the most clinically used variable to assess such oxygenation, since it decisively influences the oxygen transported by hemoglobin (expressed by its percentage of saturation, SaO2). However, two recent studies conducted respectively in silico and using omic techniques in red blood cells of COVID-19 patients have suggested that SARS-CoV-2 could decrease the affinity of oxygen for the hemoglobin (which would imply that PaO2 would overestimate SaO2), and also reduce the amount of this carrier molecule.Objective: To evaluate this hypothesis in blood samples from COVID-19 patients. Methods: Blood gases of all COVID-19 patients performed in our laboratory in two months were included, as well as those from two control groups: synchronous patients with negative PCR for SARS-CoV-2 (SCG) and a historical group (HCG). Both SaO2 and venous saturations (SvO2) measured by cooximetry (COX) were compared separately with those calculated using the Kelman (K), Severinghaus (SV) and Siggaard-Andersen (SA) equations in each group. Results: Measured and calculated SaO2 and SvO2 were practically equivalent in all groups. Intraclass correlation coefficients (ICC) for SaO2 in COVID-19 were 0.993 for COX-K and 0.992 for both COX-SV and COX-SA; being 0.995 for SvO2 for either COX-K, COX-SV or COX-SA. Hemoglobin and ferritin were slightly higher in COVID-19 compared to SCG and HCG (hemoglobin, p < 0.001 for both; ferritin, p < 0.05 for SCG and p < 0.001 for HCG). Conclusion: Under clinical conditions SARS-CoV-2 does not have an appreciable influence on the affinity of oxygen for the hemoglobin, nor on the levels of this carrier molecule. Therefore, PaO2 is a good marker of blood oxygenation also in COVID-19. (AU)


La afectación pulmonar por COVID-19 se asocia frecuentemente con alteraciones en la oxigenación. La presión parcial arterial de oxígeno (PaO2) es la variable más utilizada clínicamente para valorar dicha oxigenación, ya que influye decisivamente en el oxígeno transportado por la hemoglobina (expresado por porcentaje de saturación, SaO2). Sin embargo, dos estudios recientes realizados respectivamente in silico y mediante técnicas ómicas en hematíes de pacientes han sugerido que SARS-CoV-2 podría disminuir la afinidad del oxígeno por la hemoglobina (lo que implicaría que la PaO2 sobrevaloraría la SaO2 real), e incluso reduciría la cantidad de esta molécula transportadora.Objetivo: Evaluar dicha hipótesis en muestras gasométricas de pacientes con COVID-19. Métodos: Se incluyeron las gasometrías de todos los pacientes con COVID-19 realizadas en nuestro laboratorio, así como las de dos grupos control: pacientes sincrónicos con PCR negativa (GCS) y grupo histórico (GCH). Se compararon por separado las SaO2 y saturaciones venosas (SvO2), medidas por cooximetría (COX) con las calculadas mediante las ecuaciones de Kelman (K), Severinghaus (SV) y Siggaard-Andersen (SA) en cada grupo. Resultados: Las cifras de SaO2 y SvO2 medidas y calculadas fueron prácticamente superponibles en todos los grupos. Así, los coeficientes de correlación intraclase (CCI) en COVID-19 para SaO2 fueron 0,993 en COX-K y 0,992 en COX-SV y COX-SA; siendo 0,995 para SvO2 tanto en COX-K como en COX-SV y COX-SA. La hemoglobina y la ferritina resultaron algo superiores en el grupo COVID-19 respecto de GCS y GCH (hemoglobina, p < 0,001 en ambos; ferritina, p < 0,05 para GCS y p < 0,001 para GCH). Conclusiones: En condiciones clínicas, el SARS-CoV-2 no influye de forma apreciable en la afinidad del oxígeno por la hemoglobina, ni tampoco en los niveles de esta última. Por tanto, la PaO2 es un buen marcador de oxigenación sanguínea también en COVID-19. (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Pandemias , Infecções por Coronavirus/epidemiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Hemoglobinas , Gasometria , Oxigênio
6.
Arch Bronconeumol ; 57(12): 757-763, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34720331

RESUMO

Pulmonary involvement in COVID-19 is frequently associated with alterations in oxygenation. The arterial partial pressure of oxygen (PaO2) is the most clinically used variable to assess such oxygenation, since it decisively influences the oxygen transported by hemoglobin (expressed by its percentage of saturation, SaO2). However, two recent studies conducted respectively in silico and using omic techniques in red blood cells of COVID-19 patients have suggested that SARS-CoV-2 could decrease the affinity of oxygen for the hemoglobin (which would imply that PaO2 would overestimate SaO2), and also reduce the amount of this carrier molecule. OBJECTIVE: To evaluate this hypothesis in blood samples from COVID-19 patients. METHODS: Blood gases of all COVID-19 patients performed in our laboratory in two months were included, as well as those from two control groups: synchronous patients with negative PCR for SARS-CoV-2 (SCG) and a historical group (HCG). Both SaO2 and venous saturations (SvO2) measured by cooximetry (COX) were compared separately with those calculated using the Kelman (K), Severinghaus (SV) and Siggaard-Andersen (SA) equations in each group. RESULTS: Measured and calculated SaO2 and SvO2 were practically equivalent in all groups. Intraclass correlation coefficients (ICC) for SaO2 in COVID-19 were 0.993 for COX-K and 0.992 for both COX-SV and COX-SA; being 0.995 for SvO2 for either COX-K, COX-SV or COX-SA. Hemoglobin and ferritin were slightly higher in COVID-19 compared to SCG and HCG (hemoglobin, p < 0.001 for both; ferritin, p < 0.05 for SCG and p < 0.001 for HCG). CONCLUSION: Under clinical conditions SARS-CoV-2 does not have an appreciable influence on the affinity of oxygen for the hemoglobin, nor on the levels of this carrier molecule. Therefore, PaO2 is a good marker of blood oxygenation also in COVID-19.


La afectación pulmonar por COVID-19 se asocia frecuentemente con alteraciones en la oxigenación. La presión parcial arterial de oxígeno (PaO2) es la variable más utilizada clínicamente para valorar dicha oxigenación, ya que influye decisivamente en el oxígeno transportado por la hemoglobina (expresado por porcentaje de saturación, SaO2). Sin embargo, dos estudios recientes realizados respectivamente in silico y mediante técnicas ómicas en hematíes de pacientes han sugerido que SARS-CoV-2 podría disminuir la afinidad del oxígeno por la hemoglobina (lo que implicaría que la PaO2 sobrevaloraría la SaO2 real), e incluso reduciría la cantidad de esta molécula transportadora. OBJETIVO: Evaluar dicha hipótesis en muestras gasométricas de pacientes con COVID-19. MÉTODOS: Se incluyeron las gasometrías de todos los pacientes con COVID-19 realizadas en nuestro laboratorio, así como las de dos grupos control: pacientes sincrónicos con PCR negativa (GCS) y grupo histórico (GCH). Se compararon por separado las SaO2 y saturaciones venosas (SvO2), medidas por cooximetría (COX) con las calculadas mediante las ecuaciones de Kelman (K), Severinghaus (SV) y Siggaard-Andersen (SA) en cada grupo. RESULTADOS: Las cifras de SaO2 y SvO2 medidas y calculadas fueron prácticamente superponibles en todos los grupos. Así, los coeficientes de correlación intraclase (CCI) en COVID-19 para SaO2 fueron 0,993 en COX-K y 0,992 en COX-SV y COX-SA; siendo 0,995 para SvO2 tanto en COX-K como en COX-SV y COX-SA. La hemoglobina y la ferritina resultaron algo superiores en el grupo COVID-19 respecto de GCS y GCH (hemoglobina, p < 0,001 en ambos; ferritina, p < 0,05 para GCS y p < 0,001 para GCH). CONCLUSIONES: En condiciones clínicas, el SARS-CoV-2 no influye de forma apreciable en la afinidad del oxígeno por la hemoglobina, ni tampoco en los niveles de esta última. Por tanto, la PaO2 es un buen marcador de oxigenación sanguínea también en COVID-19.

7.
Biomacromolecules ; 22(5): 2057-2066, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33821622

RESUMO

We present the optimization of experimental conditions to yield long, rigid apoferritin protein amyloid fibrils, as well as the corresponding fibrillation pathway. Fibril growth kinetics was followed using atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS), circular dichroism (CD), fourier-transform infrared spectroscopy (FTIR), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Among the morphologies identified, we show that the conditions result in small aggregates, as well as medium and long fibrils. Extended incubation times led to progressive unfolding and hydrolysis of the proteins into very short peptide fragments. AFM, SDS-PAGE, and CD support a universal common fibrillation mechanism in which hydrolyzed fragments play the central role. These collective results provide convincing evidence that protein unfolding and complete hydrolysis of the proteins into very short peptide sequences are essential for the formation of the final apoferritin amyloid-like fibrils.


Assuntos
Amiloide , Apoferritinas , Amiloide/metabolismo , Peptídeos beta-Amiloides , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33875283

RESUMO

Pulmonary involvement in COVID-19 is frequently associated with alterations in oxygenation. The arterial partial pressure of oxygen (PaO2) is the most clinically used variable to assess such oxygenation, since it decisively influences the oxygen transported by hemoglobin (expressed by its percentage of saturation, SaO2). However, two recent studies conducted respectively in silico and using omic techniques in red blood cells of COVID-19 patients have suggested that SARS-CoV-2 could decrease the affinity of oxygen for the hemoglobin (which would imply that PaO2 would overestimate SaO2), and also reduce the amount of this carrier molecule. OBJECTIVE: To evaluate this hypothesis in blood samples from COVID-19 patients. METHODS: Blood gases of all COVID-19 patients performed in our laboratory in two months were included, as well as those from two control groups: synchronous patients with negative PCR for SARS-CoV-2 (SCG) and a historical group (HCG). Both SaO2 and venous saturations (SvO2) measured by cooximetry (COX) were compared separately with those calculated using the Kelman (K), Severinghaus (SV) and Siggaard-Andersen (SA) equations in each group. RESULTS: Measured and calculated SaO2 and SvO2 were practically equivalent in all groups. Intraclass correlation coefficients (ICC) for SaO2 in COVID-19 were 0.993 for COX-K and 0.992 for both COX-SV and COX-SA; being 0.995 for SvO2 for either COX-K, COX-SV or COX-SA. Hemoglobin and ferritin were slightly higher in COVID-19 compared to SCG and HCG (hemoglobin, p < 0.001 for both; ferritin, p < 0.05 for SCG and p < 0.001 for HCG). CONCLUSION: Under clinical conditions SARS-CoV-2 does not have an appreciable influence on the affinity of oxygen for the hemoglobin, nor on the levels of this carrier molecule. Therefore, PaO2 is a good marker of blood oxygenation also in COVID-19.

9.
Nat Chem Biol ; 17(6): 732-738, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33737758

RESUMO

Petrochemical-based plastics have not only contaminated all parts of the globe, but are also causing potentially irreversible damage to our ecosystem because of their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regard, we report aquaplastic, a new class of microbial biofilm-based biodegradable bioplastic that is water-processable, robust, templatable and coatable. Here, Escherichia coli was genetically engineered to produce protein-based hydrogels, which are cast and dried under ambient conditions to produce aquaplastic, which can withstand strong acid/base and organic solvents. In addition, aquaplastic can be healed and welded to form three-dimensional architectures using water. The combination of straightforward microbial fabrication, water processability and biodegradability makes aquaplastic a unique material worthy of further exploration for packaging and coating applications.


Assuntos
Biofilmes , Plásticos/química , Água/química , Biodegradação Ambiental , Bioengenharia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/química , Solventes , Resistência à Tração
10.
Food Chem ; 342: 128388, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33172603

RESUMO

The surface modification of ß-lactoglobulin amyloid fibrils (AFs) was investigated by performing the Maillard reaction with the free anomeric carbon of the maltodextrin in water at pH 9.0 and 90 °C. The bonding of maltodextrin to fibrils was confirmed by determining the free amino group content and the presence of final products from the Maillard reaction. The secondary structure of AFs was preserved as observed by circular dichroism analysis. Atomic force microscopy evidenced that prolonged heat treatment caused hydrolysis of the attached polysaccharide and consequently lowered the height of the fibrils from 8.0 nm (after 1 h) to 6.0 nm (after 24 h), which led to the reduction of hydrophilicity of resulting conjugate. Increasing the reaction time, however, resulted in the improvement of colloidal stability and decrease in turbidity ascribed to the increment of glycation degree, as well as, a decrease in the isoelectric point of the protein-based supramolecular object.


Assuntos
Amiloide/química , Lactoglobulinas/química , Polissacarídeos/química , Amiloide/metabolismo , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Reação de Maillard , Microscopia de Força Atômica , Polissacarídeos/metabolismo , Estrutura Secundária de Proteína , Temperatura , Água/química
11.
Soft Matter ; 16(42): 9789-9798, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33001127

RESUMO

The polymeric structure of hydrogels is commonly presented in the literature as resembling a fishing net. However, this simple view cannot fully capture all the unique properties of these materials. Crucial for a detailed description of the bulk structure in free-radical polymerized vinylic hydrogels is a thorough understanding of the cross-linker distribution. This work focuses on the precise role of the tetra-functional cross-linker in the hydrogel system: acrylamide-N,N'-methylenebis(acrylamide). Clusters of crosslinker smaller than 4 nm and their agglomerates, as well as polymer domains with sizes from the 100 nm to the µm-range, have been identified by means of both X-ray and visible-light scattering. Placed in the context of the extensive literature on this system, these observations demonstrate the heterogeneous organisation of the polymer within the hydrogel network structure, and can be accounted for by the different polymerization behavior of the monomer and crosslinker. Together with polymer-network chain-length approximations based on swelling experiments and structural observations with scanning electron microscopy, these results indicate a hierarchical structure of the polymer network surrounding pockets of water.

13.
Nanoscale ; 12(21): 11638-11646, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32436548

RESUMO

As abundant and renewable materials with excellent mechanical and functional properties, cellulose nanomaterials are utilized in advanced structural, optical and electronic applications. However, in order to further improve and develop new cellulose nanomaterials, a better understanding of the interplay between the self-assembled materials and their building blocks is crucial. This paper describes the structure-property relationships between cellulose nanofibrils (CNFs) and their resulting self-assembled structures in the form of hydrogels and aerogels. Rheological experiments revealed that the transition from viscous to elastic state with the corresponding evolution of the properties of the CNF dispersion depends on the aspect ratio and can be described in terms of the dynamic overlap concentration. The elastic shear modulus was dependent on the aspect ratio at very low CNF concentrations, reaching a plateau, where only the concentration of CNFs was relevant. This transition point in shear modulus was exploited to determine the mesh size of the fibril network, which was found to be in excellent agreement with predictions from scaling arguments. These findings highlight the possibility to tune the self-assembled materials response directly from the bottom-up by the CNF particle structure and thus, suggest new assembly routes starting directly from the CNF design.

14.
Proc Natl Acad Sci U S A ; 117(18): 9832-9839, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32317383

RESUMO

G-quadruplex, assembled from a square array of guanine (G) molecules, is an important structure with crucial biological roles in vivo but also a versatile template for ordered functional materials. Although the understanding of G-quadruplex structures is the focus of numerous studies, little is known regarding the control of G-quartet stacking modes and the spontaneous orientation of G-quadruplex fibrils. Here, the effects of different metal ions and their concentrations on stacking modes of G-quartets are elucidated. Monovalent cations (typically K+) facilitate the formation of G-quadruplex hydrogels with both heteropolar and homopolar stacking modes, showing weak mechanical strength. In contrast, divalent metal ions (Ca2+, Sr2+, and Ba2+) at given concentrations can control G-quartet stacking modes and increase the mechanical rigidity of the resulting hydrogels through ionic bridge effects between divalent ions and borate. We show that for Ca2+ and Ba2+ at suitable concentrations, the assembly of G-quadruplexes results in the establishment of a mesoscopic chirality of the fibrils with a regular left-handed twist. Finally, we report the discovery of nematic tactoids self-assembled from G-quadruplex fibrils characterized by homeotropic fibril alignment with respect to the interface. We use the Frank-Oseen elastic energy and the Rapini-Papoular anisotropic surface energy to rationalize two different configurations of the tactoids. These results deepen our understanding of G-quadruplex structures and G-quadruplex fibrils, paving the way for their use in self-assembly and biomaterials.


Assuntos
DNA/química , Quadruplex G , Guanina/química , Hidrogéis/química , Anisotropia , Cátions Bivalentes/química , Cátions Monovalentes/química , DNA/ultraestrutura , Metabolismo Energético/efeitos dos fármacos , Líquidos Iônicos/química , Íons/química , Metais/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Propriedades de Superfície
16.
Adv Sci (Weinh) ; 6(21): 1901173, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728282

RESUMO

Biological gels generally require polymeric chains that produce long-lived physical entanglements. Low molecular weight colloids offer an alternative to macromolecular gels, but often require ad-hoc synthetic procedures. Here, a short biomimetic peptide composed of eight amino acid residues derived from squid sucker ring teeth proteins is demonstrated to form hydrogel in water without any cross-linking agent or chemical modification and exhibits a stiffness on par with the stiffest peptide hydrogels. Combining solution and solid-state NMR, circular dichroism, infrared spectroscopy, and X-ray scattering, the peptide is shown to form a supramolecular, semiflexible gel assembled from unusual right-handed 310-helices stabilized in solution by π-π stacking. During gelation, the 310-helices undergo conformational transition into antiparallel ß-sheets with formation of new interpeptide hydrophobic interactions, and molecular dynamic simulations corroborate stabilization by cross ß-sheet oligomerization. The current study broadens the range of secondary structures available to create supramolecular hydrogels, and introduces 310-helices as transient building blocks for gelation via a 310-to-ß-sheet conformational transition.

17.
Langmuir ; 35(46): 14949-14958, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31642682

RESUMO

This study provides insights into dynamic nanostructural changes in phospholipid systems during hydrolysis with phospholipase C, the fate of the hydrolysis products, and the kinetics of lipolysis. The effect of lipid restructuring of the vesicle was investigated using small-angle X-ray scattering and cryogenic scanning electron microscopy. The rate and extent of phospholipid hydrolysis were quantified using nuclear magnetic resonance. Hydrolysis of two phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), results in the cleavage of the molecular headgroup, causing two strikingly different changes in lipid self-assembly. The diacylglycerol product of PC escapes the lipid bilayer, whereas the diacylglycerol product adopts a different configuration within the lipid bilayer of the PE vesicles. These results are then discussed concerning the change of the lipid configuration upon the lipid membrane and its potential implications in vivo, which is of significant importance for the detailed understanding of the fate of lipidic particles and the rational design of enzyme-responsive lipid-based drug delivery systems.


Assuntos
Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfolipases Tipo C/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrólise , Bicamadas Lipídicas , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana , Micelas , Microscopia Eletrônica de Varredura , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/química , Espalhamento a Baixo Ângulo , Fosfolipases Tipo C/metabolismo , Difração de Raios X
18.
Soft Matter ; 15(32): 6547-6556, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31359025

RESUMO

Dendronized polymers (DPs) are large and compact main-chain linear polymers with a cylindrical shape and cross-sectional diameters of up to ∼15 nm. They are therefore considered molecular objects, and it was of interest whether given their experimentally accessible, well-defined dimensions, the density of individual DPs could be determined. We present measurements on individual, deposited DP chains, providing molecular dimensions from scanning and transmission electron microscopy and mass-per-length values from quantitative scanning transmission electron microscopy. These results are compared with density values obtained from small-angle X-ray scattering on annealed bulk specimen and with classical envelope density measurements, obtained using hydrostatic weighing or a density gradient column. The samples investigated comprise a series of DPs with side groups of dendritic generations g = 1-8. The key findings are a very large spread of the density values over all samples and methods, and a consistent increase of densities with g over all methods. While this work highlights the advantages and limitations of the applied methods, it does not provide a conclusive answer to the question of which method(s) to use for the determination of densities of individual molecular objects. We are nevertheless confident that these first attempts to answer this challenging question will stimulate more research into this important aspect of polymer and soft matter science.

19.
Biomacromolecules ; 20(4): 1731-1739, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30816699

RESUMO

Polysaccharides are ubiquitous in nature and represent an essential class of biopolymers with multiple levels of conformation and structural hierarchy. However, a standardized structural nomenclature, as in the case of proteins, is still lacking due to uncertainty on their hierarchical organization. In this work we use carrageenans as model polysaccharides to demonstrate that several structural levels exist and can be unambiguously resolved by statistical analysis on high resolution Atomic Force Microscopy images, supported by spectroscopic, X-ray scattering and rheological techniques. In direct analogy with proteins, we identify primary, secondary, tertiary and quaternary structures. The structure-property relationship induced by monovalent ions for κ-, ι- and the non-gelling control λ-carrageenan is established from the single chain regime to the occurrence of hydrogels at higher concentrations. For κ-carrageenan in the presence of potassium, a disorder-order transition from random coil to single helix is first observed (secondary structure), followed by intrachain supercoiling events (tertiary structure) and macroscopic anisotropic domains which are parts of a network (quaternary structure) with tunable elasticity up to ∼103 Pa. In contrast, κ-carrageenan in the presence of sodium only produces changes in secondary structure without supercoiling events, prior to formation of gels, highlighting the ion-specificity of the process. Loosely intertwined single helices are observed for ι-carrageenan in the presence of sodium and potassium chloride, providing an elastic mesh with many junction zones, while λ-carrageenan does not undergo any structural change. A generality of the observed behavior may be inferred by extending these observations to a distinct class of polysaccharides, the weak carboxylic polyelectrolyte Gellan gum. These results advance our understanding of ion-specific structural changes of polysaccharides and the physical mechanisms responsible for their gelation.


Assuntos
Carragenina/química , Hidrogéis/química , Microscopia de Força Atômica , Polissacarídeos Bacterianos/química , Configuração de Carboidratos , Carragenina/ultraestrutura , Polissacarídeos Bacterianos/ultraestrutura
20.
Langmuir ; 35(11): 4117-4124, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30810320

RESUMO

Controlling the assembly of colloids in dispersion is a fundamental approach toward the production of functional materials. Nanocrystalline cellulose (NCC) is a charged nanoparticle whose colloidal interactions can be modulated from repulsive to attractive by increasing ionic strength. Here, we combine polarized optical microscopy, rheology, and small-angle scattering techniques to investigate (i) the concentration-driven transition from isotropic dispersion to cholesteric liquid crystals and (ii) salt-induced NCC phase transitions. In particular, we report on the formation of NCC attractive glasses containing nematic domains. At increasing NCC concentration, a structure peak was observed in small-angle X-ray scattering (SAXS) patterns. The evolution of the structure peak demonstrates the decrease in NCC interparticle distance, favoring orientational order during the isotropic-cholesteric phase transition. Small amounts of salt reduce the cholesteric volume fraction and pitch by a decrease in excluded volume. Beyond a critical salt concentration, NCC forms attractive glasses due to particle caging and reduced motility. This results in a sharp increase in viscosity and formation of viscoelastic glasses. The presence of nematic domains is suggested by the appearance of interference colors and the Cox-Merz rule failure and was confirmed by an anisotropic SAXS scattering pattern at q ranges associated with the presence of nematic domains. Thus, salt addition allows the formation of NCC attractive glasses with mechanical properties similar to those of gels while remaining optically active owed to entrapped nematic domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...