Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616133

RESUMO

BACKGROUND AND PURPOSE: There is a need for effective anti-COVID-19 treatments, mainly for individuals at risk of severe disease such as the elderly and the immunosuppressed. Drug repositioning has proved effective in identifying drugs that can find a new application for the control of coronavirus disease, in particular COVID-19. The purpose of the present study was to find synergistic antiviral combinations for COVID-19 based on lethal mutagenesis. EXPERIMENTAL APPROACH: The effect of combinations of remdesivir and ribavirin on the infectivity of SARS-CoV-2 in cell culture has been tested. Viral populations were monitored by ultra-deep sequencing, and the decrease of infectivity as a result of the treatment was measured. KEY RESULTS: Remdesivir and ribavirin exerted a synergistic inhibitory activity against SARS-CoV-2, quantified both by CompuSyn (Chou-Talalay method) and Synergy Finder (ZIP-score model). In serial passage experiments, virus extinction was readily achieved with remdesivir-ribavirin combinations at concentrations well below their cytotoxic 50 value, but not with the drugs used individually. Deep sequencing of treated viral populations showed that remdesivir, ribavirin, and their combinations evoked significant increases of the number of viral mutations and haplotypes, as well as modification of diversity indices that characterize viral quasi-species. CONCLUSION AND IMPLICATIONS: SARS-CoV-2 extinction can be achieved by synergistic combination treatments based on lethal mutagenesis. In addition, the results offer prospects of triple drug treatments for effective SARS-CoV-2 suppression.

2.
Proc Natl Acad Sci U S A ; 121(10): e2317851121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416684

RESUMO

Since its introduction in the human population, SARS-CoV-2 has evolved into multiple clades, but the events in its intrahost diversification are not well understood. Here, we compare three-dimensional (3D) self-organized neural haplotype maps (SOMs) of SARS-CoV-2 from thirty individual nasopharyngeal diagnostic samples obtained within a 19-day interval in Madrid (Spain), at the time of transition between clades 19 and 20. SOMs have been trained with the haplotype repertoire present in the mutant spectra of the nsp12- and spike (S)-coding regions. Each SOM consisted of a dominant neuron (displaying the maximum frequency), surrounded by a low-frequency neuron cloud. The sequence of the master (dominant) neuron was either identical to that of the reference Wuhan-Hu-1 genome or differed from it at one nucleotide position. Six different deviant haplotype sequences were identified among the master neurons. Some of the substitutions in the neural clouds affected critical sites of the nsp12-nsp8-nsp7 polymerase complex and resulted in altered kinetics of RNA synthesis in an in vitro primer extension assay. Thus, the analysis has identified mutations that are relevant to modification of viral RNA synthesis, present in the mutant clouds of SARS-CoV-2 quasispecies. These mutations most likely occurred during intrahost diversification in several COVID-19 patients, during an initial stage of the pandemic, and within a brief time period.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Haplótipos , Proteínas não Estruturais Virais , RNA Viral
3.
PLoS Pathog ; 19(5): e1011373, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126532

RESUMO

Picornavirus genome replication takes place in specialized intracellular membrane compartments that concentrate viral RNA and proteins as well as a number of host factors that also participate in the process. The core enzyme in the replication machinery is the viral RNA-dependent RNA polymerase (RdRP) 3Dpol. Replication requires the primer protein 3B (or VPg) attached to two uridine molecules. 3B uridylylation is also catalysed by 3Dpol. Another critical interaction in picornavirus replication is that between 3Dpol and the precursor 3AB, a membrane-binding protein responsible for the localization of 3Dpol to the membranous compartments at which replication occurs. Unlike other picornaviruses, the animal pathogen foot-and-mouth disease virus (FMDV), encodes three non-identical copies of the 3B (3B1, 3B2, and 3B3) that could be specialized in different functions within the replication complex. Here, we have used a combination of biophysics, molecular and structural biology approaches to characterize the functional binding of FMDV 3B1 to the base of the palm of 3Dpol. The 1.7 Å resolution crystal structure of the FMDV 3Dpol -3B1 complex shows that 3B1 simultaneously links two 3Dpol molecules by binding at the bottom of their palm subdomains in an almost symmetric way. The two 3B1 contact surfaces involve a combination of hydrophobic and basic residues at the N- (G5-P6, R9; Region I) and C-terminus (R16, L19-P20; Region II) of this small protein. Enzyme-Linked Immunosorbent Assays (ELISA) show that the two 3B1 binding sites play a role in 3Dpol binding, with region II presenting the highest affinity. ELISA assays show that 3Dpol has higher binding affinity for 3B1 than for 3B2 or 3B3. Membrane-based pull-down assays show that 3B1 region II, and to a lesser extent also region I play essential roles in mediating the interaction of 3AB with the polymerase and its recruitment to intracellular membranes.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Picornaviridae , Animais , Vírus da Febre Aftosa/genética , Replicação Viral/genética , Picornaviridae/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas de Membrana/metabolismo
4.
Antimicrob Agents Chemother ; 67(1): e0131522, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602354

RESUMO

We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.


Assuntos
COVID-19 , Ribavirina , Animais , Chlorocebus aethiops , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2/genética , Células Vero , Mutação , Mutagênicos/farmacologia
5.
Pathogens ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745516

RESUMO

Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50- to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussed.

6.
Microbiol Spectr ; 10(2): e0022122, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35348367

RESUMO

Mutant spectra of RNA viruses are important to understand viral pathogenesis and response to selective pressures. There is a need to characterize the complexity of mutant spectra in coronaviruses sampled from infected patients. In particular, the possible relationship between SARS-CoV-2 mutant spectrum complexity and disease associations has not been established. In the present study, we report an ultradeep sequencing (UDS) analysis of the mutant spectrum of amplicons from the nsp12 (polymerase)- and spike (S)-coding regions of 30 nasopharyngeal isolates (diagnostic samples) of SARS-CoV-2 of the first COVID-19 pandemic wave (Madrid, Spain, April 2020) classified according to the severity of ensuing COVID-19. Low-frequency mutations and deletions, counted relative to the consensus sequence of the corresponding isolate, were overwhelmingly abundant. We show that the average number of different point mutations, mutations per haplotype, and several diversity indices was significantly higher in SARS-CoV-2 isolated from patients who developed mild disease than in those associated with moderate or severe disease (exitus). No such bias was observed with RNA deletions. Location of amino acid substitutions in the three-dimensional structures of nsp12 (polymerase) and S suggest significant structural or functional effects. Thus, patients who develop mild symptoms may be a richer source of genetic variants of SARS-CoV-2 than patients with moderate or severe COVID-19. IMPORTANCE The study shows that mutant spectra of SARS-CoV-2 from diagnostic samples differ in point mutation abundance and complexity and that significantly larger values were observed in virus from patients who developed mild COVID-19 symptoms. Mutant spectrum complexity is not a uniform trait among isolates. The nature and location of low-frequency amino acid substitutions present in mutant spectra anticipate great potential for phenotypic diversification of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Nasofaringe , Pandemias , Mutação Puntual , SARS-CoV-2/genética
7.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283201

RESUMO

Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)-endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteróis/biossíntese , Transporte Biológico , Membrana Celular/metabolismo , Endocitose , Saccharomyces cerevisiae/citologia
8.
J Clin Microbiol ; 58(12)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32999010

RESUMO

Despite the high virological response rates achieved with current directly acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of treated patients do not achieve a sustained viral response. The identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultradeep sequencing (UDS) methods, for HCV characterization and patient management. Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide resistance-associated substitutions (RAS), from 220 patients who failed therapy. They were present frequently in basal and posttreatment virus of patients who failed different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. They also have limited predicted disruptive effects on the three-dimensional structures of the proteins harboring them. Possible mechanisms of HRS origin and dominance, as well as their potential predictive value for treatment response, are discussed.


Assuntos
Hepatite C Crônica , Hepatite C , Substituição de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Genótipo , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Humanos , Falha de Tratamento , Proteínas não Estruturais Virais/genética
9.
Molecules ; 24(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247979

RESUMO

Foot-and-mouth disease virus (FMDV) is an RNA virus belonging to the Picornaviridae family that contains three small viral proteins (VPgs), named VPg1, VPg2 and VPg3, linked to the 5'-end of the viral genome. These VPg proteins act as primers for RNA replication, which is initiated by the consecutive binding of two UMP molecules to the hydroxyl group of Tyr3 in VPg. This process, termed uridylylation, is catalyzed by the viral RNA-dependent RNA polymerase named 3Dpol. 5-Fluorouridine triphosphate (FUTP) is a potent competitive inhibitor of VPg uridylylation. Peptide analysis showed FUMP covalently linked to the Tyr3 of VPg. This fluorouridylylation prevents further incorporation of the second UMP residue. The molecular basis of how the incorporated FUMP blocks the incorporation of the second UMP is still unknown. To investigate the mechanism of inhibition of VPg uridylylation by FUMP, we have prepared a simplified 15-mer model of VPg1 containing FUMP and studied its x-ray crystal structure in complex with 3Dpol. Unfortunately, the fluorouridylylated VPg1 was disordered and not visible in the electron density maps; however, the structure of 3Dpol in the presence of VPg1-FUMP showed an 8 Å movement of the ß9-α11 loop of the polymerase towards the active site cavity relative to the complex of 3Dpol with VPg1-UMP. The conformational rearrangement of this loop preceding the 3Dpol B motif seems to block the access of the template nucleotide to the catalytic cavity. This result may be useful in the design of new antivirals against not only FMDV but also other picornaviruses, since all members of this family require the uridylylation of their VPg proteins to initiate the viral RNA synthesis.


Assuntos
Vírus da Febre Aftosa/metabolismo , Peptídeos/química , Proteínas Virais/química , Sequência de Aminoácidos , Modelos Moleculares , Conformação Molecular , Engenharia de Proteínas , RNA Polimerase Dependente de RNA/síntese química , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Uridina Monofosfato/química , Proteínas Virais/síntese química , Proteínas Virais/metabolismo
10.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068642

RESUMO

Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop ß9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop ß9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.


Assuntos
Vírus da Febre Aftosa/enzimologia , Mutagênese , RNA Polimerase Dependente de RNA/metabolismo , Substituição de Aminoácidos , Animais , Antivirais/metabolismo , Linhagem Celular , Cricetinae , Cristalografia por Raios X , Sinais de Localização Nuclear , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Ribavirina/metabolismo
11.
Subcell Biochem ; 88: 39-71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900492

RESUMO

Most emerging and re-emerging human and animal viral diseases are associated with RNA viruses. All these pathogens, with the exception of retroviruses, encode a specialized enzyme called RNA-dependent RNA polymerase (RdRP), which catalyze phosphodiester-bond formation between ribonucleotides (NTPs) in an RNA template-dependent manner. These enzymes function either as single polypeptides or in complex with other viral or host components to transcribe and replicate the viral RNA genome. The structures of RdRPs and RdRP catalytic complexes, currently available for several members of (+) ssRNA, (-)ssRNA and dsRNA virus families, have provided high resolution snapshots of the functional steps underlying replication and transcription of viral RNA genomes and their regulatory mechanisms.


Assuntos
Vírus de RNA , RNA Viral , RNA Polimerase Dependente de RNA , Transcrição Gênica/fisiologia , Proteínas Virais , Replicação Viral/fisiologia , Animais , Biocatálise , Humanos , Vírus de RNA/química , Vírus de RNA/fisiologia , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(27): E5343-E5351, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634303

RESUMO

Membrane fusion is essential in a myriad of eukaryotic cell biological processes, including the synaptic transmission. Rabphilin-3A is a membrane trafficking protein involved in the calcium-dependent regulation of secretory vesicle exocytosis in neurons and neuroendocrine cells, but the underlying mechanism remains poorly understood. Here, we report the crystal structures and biochemical analyses of Rabphilin-3A C2B-SNAP25 and C2B-phosphatidylinositol 4,5-bisphosphate (PIP2) complexes, revealing how Rabphilin-3A C2 domains operate in cooperation with PIP2/Ca2+ and SNAP25 to bind the plasma membrane, adopting a conformation compatible to interact with the complete SNARE complex. Comparisons with the synaptotagmin1-SNARE show that both proteins contact the same SNAP25 surface, but Rabphilin-3A uses a unique structural element. Data obtained here suggest a model to explain the Ca2+-dependent fusion process by membrane bending with a myriad of variations depending on the properties of the C2 domain-bearing protein, shedding light to understand the fine-tuning control of the different vesicle fusion events.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas do Tecido Nervoso/química , Proteína 25 Associada a Sinaptossoma/química , Proteínas de Transporte Vesicular/química , Animais , Cálcio/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Exocitose , Ligantes , Mutação , Ligação Proteica , Domínios Proteicos , Ratos , Vesículas Secretórias/metabolismo , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química , Rabfilina-3A
13.
Genome Biol Evol ; 9(5): 1212-1228, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460010

RESUMO

The selective pressures acting on viruses that replicate under enhanced mutation rates are largely unknown. Here, we describe resistance of foot-and-mouth disease virus to the mutagen 5-fluorouracil (FU) through a single polymerase substitution that prevents an excess of A to G and U to C transitions evoked by FU on the wild-type foot-and-mouth disease virus, while maintaining the same level of mutant spectrum complexity. The polymerase substitution inflicts upon the virus a fitness loss during replication in absence of FU but confers a fitness gain in presence of FU. The compensation of mutational bias was documented by in vitro nucleotide incorporation assays, and it was associated with structural modifications at the N-terminal region and motif B of the viral polymerase. Predictions of the effect of mutations that increase the frequency of G and C in the viral genome and encoded polymerase suggest multiple points in the virus life cycle where the mutational bias in favor of G and C may be detrimental. Application of predictive algorithms suggests adverse effects of the FU-directed mutational bias on protein stability. The results reinforce modulation of nucleotide incorporation as a lethal mutagenesis-escape mechanism (that permits eluding virus extinction despite replication in the presence of a mutagenic agent) and suggest that mutational bias can be a target of selection during virus replication.


Assuntos
Substituição de Aminoácidos , Vírus da Febre Aftosa/genética , Mutação , Linhagem Celular , Fluoruracila/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/fisiologia , Aptidão Genética , Cinética , Modelos Moleculares , Dobramento de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral
14.
J Virol ; 90(15): 6864-6883, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194768

RESUMO

UNLABELLED: The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE: Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen.


Assuntos
Antígenos Virais/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais , Antígenos Virais/química , Células Cultivadas , Genoma Viral , Humanos , Modelos Moleculares , Conformação Proteica , Transcrição Gênica , Proteínas não Estruturais Virais/química
15.
Viruses ; 7(8): 4438-60, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26258787

RESUMO

RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication within the infected cells. RdRP function is critical not only for the virus life cycle but also for its adaptive potential. The combination of low fidelity of replication and the absence of proofreading and excision activities within the RdRPs result in high mutation frequencies that allow these viruses a rapid adaptation to changing environments. In this review, we summarize the current knowledge about structural and functional aspects on RdRP catalytic complexes, focused mainly in the Picornaviridae family. The structural data currently available from these viruses provided high-resolution snapshots for a range of conformational states associated to RNA template-primer binding, rNTP recognition, catalysis and chain translocation. As these enzymes are major targets for the development of antiviral compounds, such structural information is essential for the design of new therapies.


Assuntos
Picornaviridae/enzimologia , Picornaviridae/fisiologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral , Animais , Humanos , Modelos Moleculares , Conformação Proteica
16.
J Virol ; 89(13): 6848-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903341

RESUMO

UNLABELLED: The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop ß9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE: The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this polymerase region can impair the transport of 3D to the nucleus, reduce 3D binding to RNA, and alter the relative incorporation of standard nucleoside monophosphate versus ribavirin monophosphate. Structural data reveal that the conformational changes in this region, forming part of the template channel entry, would be involved in nucleotide discrimination. The results have implications for the understanding of viral polymerase function and for lethal mutagenesis mechanisms.


Assuntos
Antígenos Virais/química , Antígenos Virais/metabolismo , Vírus da Febre Aftosa/enzimologia , Sinais de Localização Nuclear , Nucleotídeos/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Substituição de Aminoácidos , Antígenos Virais/genética , Cristalografia por Raios X , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica , RNA/metabolismo , Proteínas não Estruturais Virais/genética
17.
PLoS Pathog ; 11(3): e1004733, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25799064

RESUMO

The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.


Assuntos
Antivirais/química , Cardiovirus/enzimologia , Enterovirus Humano B/enzimologia , Poliovirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Sítios de Ligação , Chlorocebus aethiops , Células HeLa , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
18.
J Virol ; 88(10): 5595-607, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24600002

RESUMO

UNLABELLED: Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE: The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses.


Assuntos
Cardiovirus/enzimologia , Domínio Catalítico , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Cardiovirus/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
19.
Proc Natl Acad Sci U S A ; 110(51): 20503-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24302762

RESUMO

Proteins containing C2 domains are the sensors for Ca(2+) and PI(4,5)P2 in a myriad of secretory pathways. Here, the use of a free-mounting system has enabled us to capture an intermediate state of Ca(2+) binding to the C2A domain of rabphilin 3A that suggests a different mechanism of ion interaction. We have also determined the structure of this domain in complex with PI(4,5)P2 and IP3 at resolutions of 1.75 and 1.9 Å, respectively, unveiling that the polybasic cluster formed by strands ß3-ß4 is involved in the interaction with the phosphoinositides. A comparative study demonstrates that the C2A domain is highly specific for PI(4,5)P2/PI(3,4,5)P3, whereas the C2B domain cannot discriminate among any of the diphosphorylated forms. Structural comparisons between C2A domains of rabphilin 3A and synaptotagmin 1 indicated the presence of a key glutamic residue in the polybasic cluster of synaptotagmin 1 that abolishes the interaction with PI(4,5)P2. Together, these results provide a structural explanation for the ability of different C2 domains to pull plasma and vesicle membranes close together in a Ca(2+)-dependent manner and reveal how this family of proteins can use subtle structural changes to modulate their sensitivity and specificity to various cellular signals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Cálcio/química , Proteínas do Tecido Nervoso/química , Fosfatidilinositol 4,5-Difosfato/química , Sinaptotagmina I/química , Proteínas de Transporte Vesicular/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Rabfilina-3A
20.
J Mol Biol ; 425(13): 2279-87, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23542342

RESUMO

Increasing amounts of data show that conformational dynamics are essential for protein function. Unveiling the mechanisms by which this flexibility affects the activity of a given enzyme and how it is controlled by other effectors opens the door to the design of a new generation of highly specific drugs. Viral RNA-dependent RNA polymerases (RdRPs) are not an exception. These enzymes, essential for the multiplication of all RNA viruses, catalyze the formation of phosphodiester bonds between ribonucleotides in an RNA-template-dependent fashion. Inhibition of RdRP activity will prevent genome replication and virus multiplication. Thus, RdRPs, like the reverse transcriptase of retroviruses, are validated targets for the development of antiviral therapeutics. X-ray crystallography of RdRPs trapped in multiple steps throughout the catalytic process, together with NMR data and molecular dynamics simulations, have shown that all polymerase regions contributing to conserved motifs required for substrate binding, catalysis and product release are highly flexible and some of them are predicted to display correlated motions. All these dynamic elements can be modulated by external effectors, which appear as useful tools for the development of effective allosteric inhibitors that block or disturb the flexibility of these enzymes, ultimately impeding their function. Among all movements observed, motif B, and the B-loop at its N-terminus in particular, appears as a new potential druggable site.


Assuntos
Regulação Alostérica , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Transcrição Gênica , Motivos de Aminoácidos , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...