Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Am J Physiol Renal Physiol ; 326(1): F152-F164, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969102

RESUMO

As miR-137 is a regulator of aquaporin (AQP)2 expression and tumor necrosis factor (TNF) inhibits the expression of several extrarenal AQPs, we tested the hypothesis that TNF inhibits AQP2 in the kidney via a miR-137-dependent mechanism. AQP2 mRNA and protein expression decreased ∼70% and 53%, respectively, in primary renal inner medullary collecting duct (IMCD) cells transfected with a miRNA mimic of mmu-miR-137, suggesting that miR-137 directly targets AQP2 mRNA in these cells. Exposure of IMCD cells for 2 h to 400 mosmol/kgH2O medium increased mmu-miR-137 mRNA expression about twofold, conditions that also increased TNF production approximately fourfold. To determine if the increase in mmu-miR-137 mRNA expression was related to the concomitant increase in TNF, IMCD cells were transfected with a lentivirus construct to silence TNF. This construct decreased mmu-miR-137 mRNA expression by ∼63%, suggesting that TNF upregulates the expression of miR-137. Levels of miR-137 also increased approximately twofold in IMCD tubules isolated from male mice given 1% NaCl in the drinking water for 3 days. Intrarenal lentivirus silencing of TNF increased AQP2 mRNA levels and protein expression concomitant with a decrease in miR-137 levels in tubules isolated from mice given NaCl. The changes in AQP2 expression levels affected the diluting ability of the kidney, which was assessed by measuring urine osmolality and urine volume, as the decrease in these parameters after renal silencing of TNF was prevented on intrarenal administration of miR-137. The study reveals a novel TNF function via a miR-137-dependent mechanism that regulates AQP2 expression and function.NEW & NOTEWORTHY An emerging intratubular tumor necrosis factor system, functioning during normotensive noninflammatory conditions, acts as a breaking mechanism that attenuates both the increases in Na+-K+-2Cl- cotransporter and aquaporin-2 induced by arginine vasopressin, thereby contributing to the regulation of electrolyte balance and blood pressure. A greater appreciation for the role of cytokines as mediators of immunophysiological responses may help reveal the relationship between the immune system and other physiological systems.


Assuntos
Aquaporinas , Túbulos Renais Coletores , MicroRNAs , Camundongos , Masculino , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Cloreto de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aquaporinas/metabolismo
2.
Hypertension ; 80(2): 426-439, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448465

RESUMO

BACKGROUND: Previous studies showed that miR-195a-5p was among the most abundant microRNAs (miRNAs) expressed in the kidney. METHODS: Lentivirus silencing of tumor necrosis factor-α (TNF) was performed in vivo and in vitro. Luciferase reporter assays confirmed that bumetanide-sensitive Na+-K+-2Cl- cotransporter isoform A (NKCC2A) mRNA is targeted and repressed by miR-195a-5p. Radiotelemetry was used to measure mean arterial pressure. RESULTS: TNF upregulates mmu-miR-195a-5p, and -203 and downregulates mmu-miR-30c and -100 in the medullary thick ascending limb of male mice. miR-195a-5p was >3-fold higher in the renal outer medulla of mice given an intrarenal injection of murine recombinant TNF, whereas silencing TNF inhibited miR-195a-5p expression by ≈51%. Transient transfection of a miR-195a-5p mimic into medullary thick ascending limb cells suppressed NKCC2A mRNA by ≈83%, whereas transfection with Anti-miR-195a-5p increased NKCC2A mRNA. Silencing TNF in medullary thick ascending limb cells prevented increases in miR-195 induced by 400 mosmol/kg H2O medium, an effect reversed by transfection with a miR-195a-5p mimic. Expression of phosphorylated NKCC2 increased 1.5-fold in medullary thick ascending limb cells transfected with Anti-miR-195a-5p and a miR-195a-5p mimic prevented the increase, which was induced by silencing TNF in cells exposed to 400 mosmol/kg H2O medium after osmolality was increased by adding NaCl. Intrarenal injection of TNF suppressed NKCC2A mRNA, whereas injection of miR-195a-5p prevented the increase of NKCC2A mRNA abundance and phosphorylated NKCC2 expression when TNF was silenced. Intrarenal injection with miR-195a-5p markedly attenuated MAP after renal silencing of TNF in mice given 1% NaCl. CONCLUSIONS: The study identifies miR-195a-5p as a salt-sensitive and TNF-inducible miRNA that attenuates NaCl-mediated increases in blood pressure by inhibiting NKCC2A.


Assuntos
MicroRNAs , Cloreto de Sódio , Animais , Masculino , Camundongos , Antagomirs , Pressão Sanguínea/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
3.
J Hum Hypertens ; 37(8): 701-708, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008598

RESUMO

Previous work in mouse models shows that urinary TNF-α levels become elevated when dietary salt (NaCl) intake increases. To examine if this relationship exists in humans, we conducted a secondary analysis of the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial to determine levels of urinary TNF-α in 367 subjects categorized by race, sex, and blood pressure. The DASH-Sodium trial is a multicenter feeding trial in which subjects were randomly assigned to either the DASH or control diet, and high, medium, and low sodium in random order. Multivariable linear regression was used to model baseline TNF-α and a mixed model was used to model TNF-α as a function of dietary intervention. At baseline, with all subjects on a "typical American diet", urinary TNF-α levels were lowest in Black, p = 0.002 and male subjects, p < 0.001. After randomization to either the DASH or control diet, with increasing levels of sodium, urinary TNF-α levels increased only in subjects on the control diet, p < 0.05. As in the baseline analysis, TNF-α levels were highest in White females, then White males, Black females and lowest in Black males. The results indicate that urinary TNF-α levels in DASH-Sodium subjects are regulated by NaCl intake, modulated by the DASH diet, and influenced by both race and sex. The inherent differences between subgroups support studies in mice showing that increases in renal TNF-α minimize the extent salt-dependent activation of NKCC2.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Sódio na Dieta , Feminino , Humanos , Masculino , Animais , Camundongos , Sódio/urina , Fator de Necrose Tumoral alfa , Cloreto de Sódio , Fatores Raciais , Dieta Hipossódica , Pressão Sanguínea , Cloreto de Sódio na Dieta
4.
Hypertension ; 79(12): 2656-2670, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129177

RESUMO

TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further.


Assuntos
Angiotensina II , Fator de Necrose Tumoral alfa , Humanos , Pressão Sanguínea/fisiologia , Angiotensina II/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Rim/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo
5.
Am J Physiol Renal Physiol ; 320(6): F1159-F1164, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969695

RESUMO

Although administration of hypertonic saline (HSS) in combination with diuretics has yielded improved weight loss, preservation of renal function, and reduction in hospitalization time in the clinical setting of patients with acute decompensated heart failure (ADHF), the mechanisms that underlie these beneficial effects remain unclear and additional studies are needed before this approach can be adopted on a more consistent basis. As high salt conditions stimulate the production of several renal autacoids that exhibit natriuretic effects, renal physiologists can contribute to the understanding of mechanisms by which HSS leads to increased diuresis both as an individual therapy as well as in combination with loop diuretics. For instance, since HSS increases TNF-α production by proximal tubule and thick ascending limb of Henle's loop epithelial cells, this article is aimed at highlighting how the effects of TNF-α produced by these cell types may contribute to the beneficial effects of HSS in patients with ADHF. Although TNF-α produced by infiltrating macrophages and T cells exacerbates and attenuates renal damage, respectively, production of this cytokine within the tubular compartment of the kidney functions as an intrinsic regulator of blood pressure and Na+ homeostasis via mechanisms along the nephron related to inhibition of Na+-K+-2Cl- cotransporter isoform 2 activity and angiotensinogen expression. Thus, in the clinical setting of ADHF and hyponatremia, induction of TNF-α production along the nephron by administration of HSS may attenuate Na+-K+-2Cl- cotransporter isoform 2 activity and angiotensinogen expression as part of a mechanism that prevents excessive Na+ reabsorption in the thick ascending limb of Henle's loop, thereby mitigating volume overload.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Solução Salina Hipertônica/farmacologia , Fator de Necrose Tumoral alfa/agonistas , Diuréticos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
6.
Hypertension ; 76(6): 1744-1752, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131307

RESUMO

We showed that intrarenal suppression of TNF (tumor necrosis factor) production under low salt (LS) conditions increases renal cortical AGT (angiotensinogen) mRNA and protein expression. Intrarenal injection of murine recombinant TNF attenuated increases of AGT in mice ingesting LS. Moreover, AGT mRNA and protein expression increased ≈6-fold and 2-fold, respectively, in mice ingesting LS that also received an intrarenal injection of a lentivirus construct that specifically silenced TNF in the kidney (U6-TNF-ex4). Silencing of TNF under normal salt and high salt (HS) conditions also resulted in increased AGT expression. Since renal TNF production decreases in response to LS and increases in response to HS, the data suggest that alterations in TNF production under these conditions modulate the degree of AGT expression. We also tested the hypothesis that TNF inhibits intrarenal AGT expression by a mechanism involving miR-133a. Expression of miR-133a decreased in mice given LS and increased in response to HS for 7 days. Intrarenal silencing of TNF reversed the effects of HS on miR-133a-dependent AGT expression. In contrast, intrarenal TNF administration increased miR-133a expression in the kidney. Collectively, the data suggest that miR-133a is a salt-sensitive microRNA that inhibits AGT in the kidney and is increased by TNF. The HS-induced increase in blood pressure observed following silencing of TNF was markedly reduced upon intrarenal administration of miR-133a suggesting that intrinsic effects of TNF in the kidney to limit the blood pressure response to HS include an increase in miR-133a, which suppresses AGT expression.


Assuntos
Angiotensinogênio/genética , Regulação da Expressão Gênica/genética , Túbulos Renais Proximais/metabolismo , MicroRNAs/genética , Fator de Necrose Tumoral alfa/genética , Angiotensinogênio/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Interferência de RNA , Cloreto de Sódio na Dieta/administração & dosagem , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
7.
J Biol Chem ; 295(32): 11068-11081, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540969

RESUMO

The human cytochrome P450 family 11 subfamily B member 2 (hCYP11B2) gene encodes aldosterone synthase, the rate-limiting enzyme in the biosynthesis of aldosterone. In some humans, hCYP11B2 undergoes a unique intron conversion whose function is largely unclear. The intron conversion is formed by a replacement of the segment of DNA within intron 2 of hCYP11B2 with the corresponding region of the hCYP11B1 gene. We show here that the intron conversion is located in an open chromatin form and binds more strongly to the transcriptional regulators histone acetyltransferase P300 (p300), NFκB, and CCAAT enhancer-binding protein α (CEBPα). Reporter constructs containing the intron conversion had increased promoter activity on transient transfection in H295R cells compared with WT intron 2. We generated humanized transgenic (TG) mice containing all the introns, exons, and 5'- and 3'-flanking regions of the hCYP11B2 gene containing either the intron conversion or WT intron 2. We found that TG mice containing the intron conversion have (a) increased plasma aldosterone levels, (b) increased hCYP11B2 mRNA and protein levels, and (c) increased blood pressure compared with TG mice containing WT intron 2. Results of a ChIP assay showed that chromatin obtained from the adrenals of TG mice containing the intron conversion binds more strongly to p300, NFκB, and CEBPα than to WT intron 2. These results uncover a functional role of intron conversion in hCYP11B2 and suggest a new paradigm in blood pressure regulation.


Assuntos
Pressão Sanguínea/genética , Citocromo P-450 CYP11B2/genética , Íntrons , Transcrição Gênica/genética , Aldosterona/sangue , Animais , Citocromo P-450 CYP11B2/metabolismo , Genes Reporter , Humanos , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética
8.
Am J Physiol Renal Physiol ; 318(1): F273-F282, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31813248

RESUMO

We have previously shown that TNF-α produced by renal epithelial cells inhibits Na+-K+-2Cl- cotransporter (NKCC2) activity as part of a mechanism that attenuates increases in blood pressure in response to high NaCl intake. As the role of TNF-α in the kidney is still being defined, the effects of low salt intake on TNF-α and NKCC2B expression were determined. Mice given a low-salt (0.02% NaCl) diet (LSD) for 7 days exhibited a 62 ± 7.4% decrease in TNF-α mRNA accumulation in the renal cortex. Mice that ingested the LSD also exhibited an ~63% increase in phosphorylated NKCC2 expression in the cortical thick ascending limb of Henle's loop and a concomitant threefold increase in NKCC2B mRNA abundance without a concurrent change in NKCC2A mRNA accumulation. NKCC2B mRNA levels increased fivefold in mice that ingested the LSD and also received an intrarenal injection of a lentivirus construct that specifically silenced TNF-α in the kidney (U6-TNF-ex4) compared with mice injected with control lentivirus. Administration of a single intrarenal injection of murine recombinant TNF-α (5 ng/g body wt) attenuated the increases of NKCC2B mRNA by ~50% and inhibited the increase in phosphorylated NKCC2 by ~54% in the renal cortex of mice given the LSD for 7 days. Renal silencing of TNF-α decreased urine volume and NaCl excretion in mice given the LSD, effects that were reversed when NKCC2B was silenced in the kidney. Collectively, these findings demonstrate that downregulation of renal TNF-α production in response to low-salt conditions contributes to the regulation of NaCl reabsorption via an NKCC2B-dependent mechanism.


Assuntos
Dieta Hipossódica , Córtex Renal/metabolismo , Cloreto de Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Pressão Sanguínea/fisiologia , Técnicas de Silenciamento de Genes , Alça do Néfron/metabolismo , Camundongos , Fosforilação , Membro 1 da Família 12 de Carreador de Soluto/genética , Fator de Necrose Tumoral alfa/genética
9.
Physiol Genomics ; 50(11): 964-972, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216136

RESUMO

Previously, our comprehensive cardiovascular characterization study validated Uromodulin as a blood pressure gene. Uromodulin is a glycoprotein exclusively synthesized at the thick ascending limb of the loop of Henle and is encoded by the Umod gene. Umod-/- mice have significantly lower blood pressure than Umod+/+ mice, are resistant to salt-induced changes in blood pressure, and show a leftward shift in pressure-natriuresis curves reflecting changes of sodium reabsorption. Salt stress triggers transcription factors and genes that alter renal sodium reabsorption. To date there are no studies on renal transcriptome responses to salt stress. Here we aimed use RNA-Seq to delineate salt stress pathways in tubules isolated from Umod+/+ mice (a model of sodium retention) and Umod-/- mice (a model of sodium depletion) ± 300 mosmol sodium chloride ( n = 3 per group). In response to salt stress, the tubules of Umod+/+ mice displayed an upregulation of heat shock transcripts. The greatest changes occurred in the expression of: Hspa1a (Log2 fold change 4.35, P = 2.48 e-12) and Hspa1b (Log2 fold change 4.05, P = 2.48 e-12). This response was absent in tubules of Umod-/- mice. Interestingly, seven of the genes discordantly expressed in the Umod-/- tubules were electrolyte transporters. Our results are the first to show that salt stress in renal tubules alters the transcriptome, increasing the expression of heat shock genes. This direction of effect in Umod+/+ tubules suggest the difference is due to the presence of Umod facilitating greater sodium entry into the tubule cell reflecting a specific response to salt stress.


Assuntos
Resposta ao Choque Térmico/genética , Túbulos Renais/fisiologia , Estresse Salino/genética , Uromodulina/genética , Animais , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Alça do Néfron/fisiologia , Masculino , Camundongos Mutantes , Regulação para Cima
10.
Hypertension ; 71(6): 1117-1125, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735631

RESUMO

We tested the hypothesis that TNF (tumor necrosis factor)-α produced within the kidney and acting on the renal tubular system is part of a regulatory mechanism that attenuates increases in blood pressure in response to high salt intake. Intrarenal administration of a lentivirus construct, which specifically silenced TNF in the kidney, did not affect baseline blood pressure. However, blood pressure increased significantly 1 day after mice with intrarenal silencing of TNF ingested 1% NaCl in the drinking water. The increase in blood pressure, which was continuously observed for 11 days, promptly returned to baseline levels when mice were switched from 1% NaCl to tap water. Silencing of renal TNF also increased NKCC2 (Na+-K+-2Cl- cotransporter) phosphorylation and induced a selective increase in NKCC2A (NKCC2 isoform A) mRNA accumulation in both the cortical and medullary thick ascending limb of Henle loop that was neither associated with a compensatory decrease of NKCC2F in the medulla nor NKCC2B in the cortex. The NaCl-mediated increases in blood pressure were completely absent when NKCC2A, using a lentivirus construct that did not alter expression of NKCC2F or NKCC2B, and TNF were concomitantly silenced in the kidney. Moreover, the decrease in urine volume and NaCl excretion induced by renal TNF silencing was abolished when NKCC2A was concurrently silenced, suggesting that this isoform contributes to the transition from a salt-resistant to salt-sensitive phenotype. Collectively, the data are the first to demonstrate a role for TNF produced by the kidney in the modulation of sodium homeostasis and blood pressure regulation.


Assuntos
Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica , Hipertensão Renal/genética , Rim/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Fator de Necrose Tumoral alfa/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hipertensão Renal/metabolismo , Hipertensão Renal/fisiopatologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/toxicidade , Membro 1 da Família 12 de Carreador de Soluto/biossíntese , Transcrição Gênica
11.
Physiol Genomics ; 49(5): 261-276, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28389525

RESUMO

Hypertension (HTN), a major public health issue is currently the leading factor in the global burden of disease, where associated complications account for 9.4 million deaths worldwide every year. Excessive dietary salt intake is among the environmental factors that contribute to HTN, known as salt sensitivity. The heterogeneity of salt sensitivity and the multiple mechanisms that link high salt intake to increases in blood pressure are of upmost importance for therapeutic application. A continual increase in the kidney's reabsorption of sodium (Na+) relies on sequential actions at various segments along the nephron. When the distal segments of the nephron fail to regulate Na+, the effects on Na+ homeostasis are unfavorable. We propose that the specific nephron region where increased active uptake occurs as a result of variations in Na+ reabsorption is at the thick ascending limb of the loop of Henle (TAL). The purpose of this review is to urge the consideration of the TAL as contributing to the pathophysiology of salt-sensitive HTN. Further research in this area will enable development of a therapeutic application for targeted treatment.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Pressão Sanguínea/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Hipertensão/fisiopatologia , Alça do Néfron/fisiologia , Animais , Proteínas de Transporte de Ânions/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Humanos , Alça do Néfron/anatomia & histologia , Alça do Néfron/fisiopatologia , Trocador 3 de Sódio-Hidrogênio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Uromodulina/química , Uromodulina/metabolismo
12.
Am J Physiol Renal Physiol ; 311(4): F822-F829, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465993

RESUMO

The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 µg·kg-1·day-1) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by ∼75% in TAL tubules from rats given 1% NaCl concomitant with a ∼60% inhibition of COX-2-dependent PGE2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced ∼40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 µg·kg-1·day-1), which increased COX-2 expression and renal PGE2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE2 synthesis, thereby mitigating the inhibitory effects of PGE2 on these transporters and decreasing urine volume.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Retroalimentação Fisiológica/fisiologia , Rim/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Sódio na Dieta/administração & dosagem , Água/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Ciclo-Oxigenase 2/genética , Retroalimentação Fisiológica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Masculino , Ratos , Receptores de Prostaglandina E Subtipo EP3/genética , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
13.
J Matern Fetal Neonatal Med ; 28(8): 869-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25034210

RESUMO

We tested the hypothesis that maternal peripheral blood leukocytes contribute to elevated levels of soluble TNF receptors (sTNFR) in preeclampsia (PE) with concomitant intrauterine growth restriction (IUGR). TNFR1 and TNFR2 were evaluated in a cross-sectional study comparing preeclamptic (n = 15) with or without IUGR versus normotensive pregnant women (PREG, n = 30), and non-pregnant controls (Con; n = 20). Plasma levels of sTNFR1 were higher in PE (1675.0 ± 227.1 pg/mL) compared with PREG (1035.0 ± 101.1 pg/mL) and Con (589.3 ± 82.67 pg/mL), with the highest values observed in PE with IUGR (2624.0 ± 421.4 pg/mL; n = 6). Plasma sTNFR2 was higher during pregnancy (PE: 1836.0 ± 198.7 pg/mL; PREG: 1697.0 ± 95.0 pg/mL) compared with Con (598.3 ± 82.7 pg/mL). Urinary levels of sTNFR1 and sTNFR2 were higher in PE and PREG compared with the Con group. Abundance of TNFR1 mRNA in peripheral blood leukocytes was strongly correlated with plasma levels of sTNFR1 in PE. However, TNFR2 mRNA accumulation in leukocytes did not correlate with sTNFR2 plasma levels. The level of sTNFR1 in plasma was correlated with body weight of the newborn (r = -0.56). The data suggest that maternal leukocytes contribute to sTNFR1 levels in plasma in association with decreasing newborn weight and PE with concomitant IUGR.


Assuntos
Retardo do Crescimento Fetal/imunologia , Leucócitos/metabolismo , Pré-Eclâmpsia/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Peso ao Nascer , Estudos de Casos e Controles , Estudos Transversais , Feminino , Retardo do Crescimento Fetal/sangue , Retardo do Crescimento Fetal/urina , Humanos , Recém-Nascido , Pessoa de Meia-Idade , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/urina , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Receptores Tipo I de Fatores de Necrose Tumoral/urina , Receptores Tipo II do Fator de Necrose Tumoral/urina , Índice de Gravidade de Doença
14.
Am J Physiol Renal Physiol ; 307(6): F736-46, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25080527

RESUMO

We tested the hypothesis that inhibition of EP3 receptors enhances cyclooxygenase (COX)-2 expression in the thick ascending limb (TAL) induced by hypertonic stimuli. COX-2 protein expression in the outer medulla increased approximately twofold in mice given free access to 1% NaCl in the drinking water for 3 days. The increase was associated with an approximate threefold elevation in COX-2 mRNA accumulation and an increase in PGE2 production by isolated medullary (m)TAL tubules from 77.3 ± 8.4 to 165.7 ± 10.8 pg/mg protein. Moreover, administration of NS-398 abolished the increase in PGE2 production induced by 1% NaCl. EP3 receptor mRNA levels also increased approximately twofold in the outer medulla of mice that ingested 1% NaCl. The selective EP3 receptor antagonist L-798106 increased COX-2 mRNA by twofold in mTAL tubules, and the elevation in COX-2 protein induced by 1% NaCl increased an additional 50% in mice given L-798106. COX-2 mRNA in primary mTAL cells increased twofold in response to media made hypertonic by the addition of NaCl (400 mosmol/kg H2O). L-798106 increased COX-2 mRNA twofold in isotonic media and fourfold in cells exposed to 400 mosmol/kg H2O. PGE2 production by mTAL cells increased from 79.3 ± 4.6 to 286.7 ± 6.3 pg/mg protein after challenge with 400 mosmol/kg H2O and was inhibited in cells transiently transfected with a lentivirus short hairpin RNA construct targeting exon 5 of COX-2 to silence COX-2. Collectively, the data suggest that local hypertonicity in the mTAL is associated with an increase in COX-2 expression concomitant with elevated EP3 receptor expression, which limits COX-2 activity in this segment of the nephron.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Alça do Néfron/enzimologia , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Sulfonamidas/metabolismo , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Transdução de Sinais , Cloreto de Sódio
16.
Hypertension ; 63(3): e46-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24379188

RESUMO

NFAT5 is a transcription factor that protects the kidney from hypertonic stress and also is activated by hypoxia. We hypothesized that NFAT5 mitigates the extent of renal damage induced by ischemia-reperfusion injury (IRI). Mice were subjected to IRI by unilateral clamping of the left renal pedicle for 30 minutes followed by reperfusion. After 3 hours of reperfusion, the level of NFAT5 mRNA was similar in contralateral and clamped kidneys. However, after 48 hours, NFAT5 mRNA accumulation increased ≈3-fold in both outer medulla and medullary thick ascending limb tubules. NFAT1 levels were elevated at 3 hours but did not increase further at 48 hours. Mice were then either pretreated for 72 hours with an intrarenal injection of a lentivirus short-hairpin RNA construct to silence NFAT5 (enhanced green fluorescent protein-U6-N5-ex8) or a control vector (enhanced green fluorescent protein-U6) before induction of IRI. Neutrophil gelatinase-associated lipocalin and kidney ischemia molecule-1 mRNA levels increased after IRI and further increased after knockdown of NFAT5, suggesting that silencing of NFAT5 exacerbates renal damage during IRI. In contrast, silencing of NFAT1 had no effect on the levels of neutrophil gelatinase-associated lipocalin or kidney ischemia molecule-1 mRNA. Hematoxylin and eosin staining revealed patchy denudation of renal epithelial cells and tubular dilation when NFAT5 was silenced. The number of TUNEL-positive cells in the outer and inner medulla of the clamped kidney increased nearly 2-fold after knockdown of NFAT5 and was associated with an increase in the number of caspase-3-positive cells. Collectively, the data suggest that NFAT5 is part of a protective mechanism that limits renal damage induced by IRI.


Assuntos
Injúria Renal Aguda/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/genética , Traumatismo por Reperfusão/complicações , Fatores de Transcrição/genética , Injúria Renal Aguda/etiologia , Animais , Apoptose , Western Blotting , Modelos Animais de Doenças , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição/metabolismo
17.
Hypertension ; 63(3): 551-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24324041

RESUMO

A recent genome-wide association study identified a locus on chromosome 16 in the promoter region of the uromodulin (UMOD) gene that is associated with hypertension. Here, we examined the hypertension signal with functional studies in Umod knockout (KO) mice. Systolic blood pressure was significantly lower in KO versus wild-type (WT) mice under basal conditions (KO: 116.6±0.3 mm Hg versus WT: 136.2±0.4 mm Hg; P<0.0001). Administration of 2% NaCl did not alter systolic blood pressure in KO mice, whereas it increased in WT mice by ≈33%, P<0.001. The average 24-hour urinary sodium excretion in the KO was greater than that of WT mice (P<0.001). Chronic renal function curves demonstrate a leftward shift in KO mice, suggesting that the relationship between UMOD and blood pressure is affected by sodium. Creatinine clearance was increased during salt loading with 2% NaCl in the KO mice, leading to augmented filtered Na(+) excretion and further Na(+) loss. The difference in sodium uptake that exists between WT and KO strains was explored at the molecular level. Urinary tumor necrosis factor-α levels were significantly higher in KO mice compared with WT mice (P<0.0001). Stimulation of primary thick ascending limb of the loop of Henle cells with exogenous tumor necrosis factor-α caused a reduction in NKCC2A expression (P<0.001) with a concurrent rise in the levels of UMOD mRNA (P<0.001). Collectively, we demonstrate that UMOD regulates sodium uptake in the thick ascending limb of the loop of Henle by modulating the effect of tumor necrosis factor-α on NKCC2A expression, making UMOD an important determinant of blood pressure control.


Assuntos
Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica , Hipertensão/genética , RNA/genética , Uromodulina/genética , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hipertensão Essencial , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo , Uromodulina/biossíntese
18.
Free Radic Biol Med ; 63: 108-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23619127

RESUMO

Mitochondrial diseases (MDs) are heterogeneous disorders due to impaired respiratory chain function causing defective ATP production. Although the disruption of oxidative phosphorylation is central to the MD pathophysiology, other factors may contribute to these disorders. We investigated the expression and the cellular localization of TNF-α and its receptors, TNFR1 and TNFR2, in muscle biopsies from 15 patients with mitochondrial respiratory chain dysfunction. Our data unambiguously demonstrate that TNF-α is expressed in muscle fibers with abnormal focal accumulations of mitochondria, so-called ragged red fibers, and is delivered to mitochondria where both receptors are localized. Moreover TNF receptors are differentially regulated in patients' muscle in which the expression levels of TNFR1 mRNA are decreased and those of TNFR2 mRNA are increased compared with controls. These findings suggest for the first time that TNF-α could exert a direct effect on mitochondria via its receptors.


Assuntos
Doenças Mitocondriais/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Biópsia , DNA Mitocondrial/genética , Feminino , Expressão Gênica , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Mutação , Fosforilação Oxidativa , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
19.
Am J Physiol Renal Physiol ; 304(5): F533-42, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23269645

RESUMO

Pathways that contribute to TNF production by the kidney are not well defined. Mice given 1% NaCl in the drinking water for 3 days exhibited a 2.5-fold increase in urinary, but not plasma, TNF levels compared with mice given tap water. Since furosemide attenuated the increase in TNF levels, we hypothesized that hypertonic NaCl intake increases renal TNF production by a pathway involving the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). A 2.5-fold increase in NKCC2A mRNA accumulation was observed in medullary thick ascending limb (mTAL) tubules from mice given 1% NaCl; a concomitant 2-fold increase in nuclear factor of activated T cells 5 (NFAT5) mRNA and protein expression was observed in the outer medulla. Urinary TNF levels were reduced in mice given 1% NaCl after an intrarenal injection of a lentivirus construct designed to specifically knockdown NKCC2A (EGFP-N2A-ex4); plasma levels of TNF did not change after injection of EGFP-N2A-ex4. Intrarenal injection of EGFP-N2A-ex4 also inhibited the increase of NFAT5 mRNA abundance in the outer medulla of mice given 1% NaCl. TNF production by primary cultures of mTAL cells increased approximately sixfold in response to an increase in osmolality to 400 mosmol/kgH2O produced with NaCl and was inhibited in cells transiently transfected with a dnNFAT5 construct. Transduction of cells with EGFP-N2A-ex4 also prevented increases in TNF mRNA and protein production in response to high NaCl concentration and reduced transcriptional activity of a NFAT5 promoter construct. Since NKCC2A expression is restricted to the TAL, NKCC2A-dependent activation of NFAT5 is part of a pathway by which the TAL produces TNF in response to hypertonic NaCl intake.


Assuntos
Rim/metabolismo , Fatores de Transcrição NFATC/metabolismo , Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Rim/citologia , Rim/efeitos dos fármacos , Alça do Néfron/citologia , Alça do Néfron/efeitos dos fármacos , Alça do Néfron/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto , Fator de Necrose Tumoral alfa/urina
20.
Prostaglandins Other Lipid Mediat ; 99(1-2): 45-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22800939

RESUMO

The effect of tumor necrosis factor-alpha (TNF) on cyclooxygenase-2 (COX-2) expression in the renal outer medulla (OM) was determined in a model of dihydrotachysterol (DHT)-induced hypercalcemia. Increases in serum calcium and water intake were observed during ingestion of a DHT-containing diet in both wild type (WT) and TNF deficient mice (TNF(-/-)). Polyuria and a decrease in body weight were observed in response to DHT treatment in WT and TNF(-/-) mice. A transient elevation in urinary TNF was observed in WT mice treated with DHT. Moreover, increased urinary levels of prostaglandin E(2) (PGE(2)) and a corresponding increase in COX-2 expression in the OM were observed in WT mice fed DHT. Increased COX-2 expression was not observed in TNF(-/-) mice fed DHT, and the characteristics of PGE(2) synthesis were distinct from those in WT mice. This study demonstrates that COX-2 expression in the OM, secondary to hypercalemia, is TNF-dependent.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Hipercalcemia/metabolismo , Medula Renal/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Di-Hidrotaquisterol , Hipercalcemia/induzido quimicamente , Masculino , Camundongos , Poliúria/induzido quimicamente , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...