Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674557

RESUMO

Humans are constantly exposed to many environmental pollutants, some of which have been largely acknowledged as key factors in the development of metabolic disorders such as diabetes and obesity. These chemicals have been classified as endocrine-disrupting chemicals (EDCs) and, more recently, since they can interfere with metabolic functions, they have been renamed as metabolism-disrupting chemicals (MDCs). MDCs are present in many consumer products, including food packaging, personal care products, plastic bottles and containers, and detergents. The scientific literature has ever-increasingly focused on insulin-releasing pancreatic ß-cells as one of the main targets for MDCs. Evidence highlights that these substances may disrupt glucose homeostasis by altering pancreatic ß-cell physiology. However, their potential impact on glucagon-secreting pancreatic α-cells remains poorly known despite the essential role that this cellular type plays in controlling glucose metabolism. In the present study, we have selected seven paradigmatic MDCs representing major toxic classes, including bisphenols, phthalates, perfluorinated compounds, metals, and pesticides. By using an in vitro cell-based model, the pancreatic α-cell line αTC1-9, we have explored the effects of these compounds on pancreatic α-cell viability, gene expression, and secretion. We found that cell viability was moderately affected after bisphenol-A (BPA), bisphenol-F (BPF), and perfluorooctanesulfonic acid (PFOS) exposure, although cytotoxicity was relatively low. In addition, all bisphenols, as well as di(2-ethylhexyl) phthalate (DEHP) and cadmium chloride (CdCl2), promoted a marked decreased on glucagon secretion, together with changes in the expression of glucagon and/or transcription factors involved in cell function and identity, such as Foxo1 and Arx. Overall, our results indicated that most of the selected chemicals studied caused functional alterations in pancreatic α-cells. Moreover, we revealed, for the first time, their direct effects on key molecular aspects of pancreatic α-cell biology.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Humanos , Glucagon , Sobrevivência Celular , Poluentes Ambientais/toxicidade , Insulina , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Expressão Gênica
2.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35457000

RESUMO

Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with the normal function of the endocrine system. EDCs are ubiquitous and can be found in a variety of consumer products such as food packaging materials, personal care and household products, plastic additives, and flame retardants. Over the last decade, the impact of EDCs on human health has been widely acknowledged as they have been associated with different endocrine diseases. Among them, a subset called metabolism-disrupting chemicals (MDCs) is able to promote metabolic changes that can lead to the development of metabolic disorders such as diabetes, obesity, hepatic steatosis, and metabolic syndrome, among others. Despite this, today, there are still no definitive and standardized in vitro tools to support the metabolic risk assessment of existing and emerging MDCs for regulatory purposes. Here, we evaluated the following two different pancreatic cell-based in vitro systems: the murine pancreatic ß-cell line MIN6 as well as the human pancreatic ß-cell line EndoC-ßH1. Both were challenged with the following range of relevant concentrations of seven well-known EDCs: (bisphenol-A (BPA), bisphenol-S (BPS), bisphenol-F (BPF), perfluorooctanesulfonic acid (PFOS), di(2-ethylhexyl) phthalate (DEHP), cadmium chloride (CdCl2), and dichlorodiphenyldichloroethylene (DDE)). The screening revealed that most of the tested chemicals have detectable, deleterious effects on glucose-stimulated insulin release, insulin content, electrical activity, gene expression, and/or viability. Our data provide new molecular information on the direct effects of the selected chemicals on key aspects of pancreatic ß-cell function, such as the stimulus-secretion coupling and ion channel activity. In addition, we found that, in general, the sensitivity and responses were comparable to those from other in vivo studies reported in the literature. Overall, our results suggest that both systems can serve as effective tools for the rapid screening of potential MDC effects on pancreatic ß-cell physiology as well as for deciphering and better understanding the molecular mechanisms that underlie their action.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Animais , Diclorodifenil Dicloroetileno , Disruptores Endócrinos/toxicidade , Humanos , Insulina , Camundongos , Plásticos
3.
Food Chem Toxicol ; 145: 111681, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805339

RESUMO

Bisphenol-A (BPA) is a widespread endocrine disrupting chemical that constitutes a risk factor for type 2 diabetes mellitus (T2DM). Data from animal and human studies have demonstrated that early exposure to BPA results in adverse metabolic outcomes in adult life. In the present work, we exposed pregnant heterozygous estrogen receptor ß (ERß) knock out (BERKO) mice to 10 µg/kg/day BPA, during days 9-16 of pregnancy, and measured ß-cell mass and proliferation in wildtype (WT) and BERKO male offspring at postnatal day 30. We observed increased pancreatic ß-cell proliferation and mass in WT, yet no effect was produced in BERKO mice. Dispersed islet cells in primary culture treated with 1 nM BPA showed an enhanced pancreatic ß-cell replication rate, which was blunted in pancreatic ß-cells from BERKO mice and mimicked by the selective ERß agonist WAY200070. This increased ß-cell proliferation was found in male adult as well as in neonate pancreatic ß-cells, suggesting that BPA directly impacts ß-cell division at earliest stages of life. These findings strongly indicate that BPA during pregnancy upregulates pancreatic ß-cell division and mass in an ERß-dependent manner. Thus, other natural or artificial chemicals may use this ERß-mediated pathway to promote similar effects.


Assuntos
Compostos Benzidrílicos/toxicidade , Receptor beta de Estrogênio/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Exposição Materna/efeitos adversos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor beta de Estrogênio/genética , Feminino , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
4.
Mol Neurobiol ; 55(12): 9328-9333, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29671277

RESUMO

Tau is a microtubule-associated protein highly expressed in neurons with a chief role in microtubule dynamics and axonal maintenance. Adrenomedullin gene (ADM) codifies for various peptides that exert broad range of actions in the body. Previous works in our groups have shown that increased ADM products are positively correlated to microtubule disruption and tau pathology in Alzheimer's disease brains. In the present study, we explore the involvement of ADM in the neuropathology of frontotemporal lobar degeneration that presents with primary tauopathy (FTLD-tau). Proteins from frontal cortices of FTLD-tau patients and age- and sex-matched non-demented controls were analyzed with antibodies against different microtubule components, including adrenomedullin, and synaptic markers. Tau pathology in frontal cortex from FTLD patients was confirmed. Levels of total ßIII-tubulin as well as acetylated and detyrosinated tubulins, two markers of stabilized and aged microtubules, were significantly reduced and directly correlated with PSD95 and proBDNF in FTLD-tau patients when compared to non-demented controls. In contrast, no change in actin cytoskeleton was found. Interestingly, changes in microtubule elements, indicators of disturbed axonal preservation, were accompanied by decreased levels of free adrenomedullin, although no association was found. Altogether, reduced levels of adrenomedullin might not be directly linked to the microtubule pathology of FTLD-tau, but based on previous works, it is suggested that downregulation of ADM might be an adaptive attempt of neurons to mitigate microtubule disruption.


Assuntos
Adrenomedulina/metabolismo , Degeneração Lobar Frontotemporal/patologia , Microtúbulos/metabolismo , Adrenomedulina/genética , Idoso , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo
5.
Mol Neurobiol ; 55(12): 8799-8814, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29600350

RESUMO

Neurodegenerative diseases represent a heterogeneous group of disorders whose common characteristic is the progressive degeneration of neuronal structure and function. Although much knowledge has been accumulated on the pathophysiology of neurodegenerative diseases over the years, more efforts are needed to understand the processes that underlie these diseases and hence to propose new treatments. Adrenomedullin (AM) is a multifunctional peptide involved in vasodilation, hormone secretion, antimicrobial defense, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins that interfere with microtubule dynamics. Furthermore, AM may intervene in neuronal dysfunction through other mechanisms such as immune and inflammatory response, apoptosis, or calcium dyshomeostasis. Alterations in AM expression have been described in neurodegenerative processes such as Alzheimer's disease or vascular dementia. This review addresses the current state of knowledge on AM and its possible implication in neurodegenerative diseases.


Assuntos
Adrenomedulina/antagonistas & inibidores , Terapia de Alvo Molecular , Doenças Neurodegenerativas/terapia , Adrenomedulina/química , Animais , Citoesqueleto/metabolismo , Humanos , Modelos Neurológicos , Neurônios/metabolismo
6.
Mol Neurobiol ; 55(6): 5177-5183, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28866832

RESUMO

Alzheimer's disease (AD) is characterized by the loss of synaptic contacts caused in part by cytoskeleton disruption. Adrenomedullin (AM) is involved in physiological functions such as vasodilation, hormone secretion, antimicrobial activity, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins, causing microtubule destabilization. Here, we describe the relationships between AM and other signs of AD in clinical specimens. Frontal cortex from AD patients and controls were studied for AM, acetylated tubulin, NCAM, Ox-42, and neurotransmitters. AM was increased in AD compared with controls, while levels of acetylated tubulin, NCAM, and neurotransmitters were decreased. Interestingly, increases in AM statistically correlated with the decrease in these markers. Furthermore, Ox42 overexpression in AD correlated with levels of AM. It is proposed that AD patients may have neural cytoskeleton failure associated with increase of AM levels, resulting in axon transport collapse and synaptic loss. These observations suggest that reducing AM expression may constitute a new avenue to prevent/treat AD.


Assuntos
Adrenomedulina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Biomarcadores/metabolismo , Encéfalo/patologia , Antígeno CD11b/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Humanos , Microglia/metabolismo , Tubulina (Proteína)/metabolismo
7.
Front Mol Neurosci ; 10: 384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187812

RESUMO

Memory decline is common in elderly individuals and is the hallmark of Alzheimer's disease (AD). Memory failure follows the loss of synaptic contacts in the cerebral cortex and hippocampus, caused in part by cytoskeleton disruption. Adrenomedullin (AM) and its gene-related peptide, proadrenomedullin N-terminal 20 peptide (PAMP), are microtubule-associated proteins (MAP) whose expression has been identified as a potential biomarker for predicting progression from predementia to clinical AD. Here we analyze the connection between AM levels and memory preservation. Mice lacking neuronal AM and PAMP (knockout, KO) and their wild type (WT) littermates were subjected, at different ages, to the novel object recognition test and the contextual fear conditioned test. Aged KO mice have significantly better retention memory than their WT counterparts. This feature was more prominent in females than in males. Prefrontal cortex and hippocampus samples from these animals were subjected to Western blotting for phospho-Tau and acetylated tubulin. Aged female KO mice had significantly less accumulation of phospho-Tau than their WT littermates. In addition, protein extracts from the frontal cortex of non-demented mature (65.10 ± 3.86 years) and aged (77.14 ± 2.77 years) human donors were analyzed by Western blotting. Aged human brains had significantly higher levels of AM and lower levels of acetylated tubulin than younger donors. These observations suggest that drugs or interventions that reduce AM/PAMP expression may constitute a new avenue to prevent memory decline during normal aging and in patients suffering moderate AD in high risk of rapid cognitive decline.

8.
Biochim Biophys Acta Mol Basis Dis ; 1863(4): 991-1001, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28132883

RESUMO

Brain-derived neurotrophic factor (BDNF) plays pivotal roles in neuronal function. The cleaved - mature - form of BDNF (mBDNF), predominantly expressed in adult brains, critically determines its effects. However, insufficient proteolytic processing under pathology may lead to the precursor form of BDNF (proBDNF) and thereby increased neuronal apoptosis and synaptic weakening. Previous findings in our lab showed that cognitive stimulation (CS) delayed memory decline in Tg2576 mouse model of Alzheimer's disease (AD), an effect that was tightly associated with augmented levels of mBDNF. In view of this association, the present study explored whether altered cleavage of BDNF could be involved in AD-related traits triggered by excessive amyloid-ß (Aß) pathology and whether this process could be therapeutically targeted. Aß pathology, both in AD patient samples and experimental models, triggered the upregulation of plasminogen-activator inhibitor-1 (PAI-1) via JNK/c-Jun. This led to inhibition of plasmin-regulated conversion of mBDNF. Pharmacological inhibition of PAI-1 with PAI-039 sufficiently reverted Aß-induced tau hyperphosphorylation and neurotoxicity. Chronic treatment of 15 old-month Tg2576 mice with oral administration of PAI-039 resulted in improved BDNF maturation and cognitive function without inducing significant changes in amyloid burden. In conclusion, upregulation of PAI-1 may be a critical mechanism underlying insufficient neurotrophic support and increased neurodegeneration associated with AD. Thus, targeting BDNF maturation through pharmacological inhibition of PAI-1 might become a potential treatment for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Serpina E2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Humanos , Ácidos Indolacéticos/farmacologia , Camundongos , Camundongos Transgênicos , Inibidor 1 de Ativador de Plasminogênio/genética , Serpina E2/genética
9.
CNS Drugs ; 31(1): 19-32, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27914038

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in elderly people. Because of the lack of effective treatments for this illness, research focused on identifying compounds that restore cognition and functional impairments in patients with AD is a very active field. Since its discovery in 1993, the serotonin 5-HT6 receptor has received increasing attention, and a growing number of studies supported 5-HT6 receptor antagonism as a target for improving cognitive dysfunction in AD. This article reviews the rationale behind investigations into the targeting of 5-HT6 receptors as a symptomatic treatment for cognitive and/or behavioral symptoms of AD. In addition to describing the available clinical evidence, this article also describes the purported biochemical and neurochemical mechanisms of action by which 5-HT6 receptor antagonists could influence cognition, and the preclinical data supporting this therapeutic approach to AD. A large number of publications describing the development of ligands for this receptor have come to light and preclinical data indicate the procognitive efficacy of 5-HT6 receptor antagonists. Subsequently, the number of patents protecting 5-HT6 chemical entities has continuously grown. Some of these compounds have successfully undergone phase I clinical studies and have been further evaluated in clinical phase II trials with variable success. Phase II studies have also revealed the potential of combining 5-HT6 receptor antagonism and cholinesterase inhibition. Two of these antagonists, idalopirdine and RVT-101, have been further developed into ongoing phase III clinical trials. Overall, 5-HT6 receptor antagonists can reasonably be regarded as potential drug candidates for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Antagonistas da Serotonina/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...