Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
NMR Biomed ; : e5196, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853759

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is a common neurological syndrome in newborns with high mortality and morbidity. Therapeutic hypothermia (TH), which is standard of care for HIE, mitigates brain injury by suppressing anaerobic metabolism. However, more than 40% of HIE neonates have a poor outcome, even after TH. This study aims to provide metabolic biomarkers for predicting the outcomes of hypoxia-ischemia (HI) after TH using hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy. Postnatal day 10 (P10) mice with HI underwent TH at 1 h and were scanned at 6-8 h (P10), 24 h (P11), 7 days (P17), and 21 days (P31) post-HI on a 14.1-T NMR spectrometer. The metabolic images were collected, and the conversion rate from pyruvate to lactate and the ratio of lactate to pyruvate in the injured left hemisphere (kPL(L) and Lac/Pyr(L), respectively) were calculated at each timepoint. The outcomes of TH were determined by the assessments of brain injury on T2-weighted images and behavioral tests at later timepoint. kPL(L) and Lac/Pyr(L) over time between the good-outcome and poor-outcome groups and across timepoints within groups were analyzed. We found significant differences in temporal trends of kPL(L) and Lac/Pyr(L) between groups. In the good-outcome group, kPL(L) increased until P31 with a significantly higher value at P31 compared with that at P10, while the level of Lac/Pyr(L) at P31 was notably higher than those at all other timepoints. In the poor-outcome group, kPL(L) and Lac/Pyr(L) increased within 24 h. The kPL(L) value at P11 was considerably higher compared with P10. Discrete temporal changes of kPL(L) and Lac/Pyr(L) after TH between the good-outcome and poor-outcome groups were seen as early as 24 h after HI, reflecting various TH effects on brain anaerobic metabolism, which may provide insights for early screening for response to TH.

2.
Pediatr Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902453

RESUMO

BACKGROUND: 'Neonatal encephalopathy' (NE) describes a group of conditions in term infants presenting in the earliest days after birth with disturbed neurological function of cerebral origin. NE is aetiologically heterogenous; one cause is peripartum hypoxic ischaemia. Lack of uniformity in the terminology used to describe NE and its diagnostic criteria creates difficulty in the design and interpretation of research and complicates communication with families. The DEFINE study aims to use a modified Delphi approach to form a consensus definition for NE, and diagnostic criteria. METHODS: Directed by an international steering group, we will conduct a systematic review of the literature to assess the terminology used in trials of NE, and with their guidance perform an online Real-time Delphi survey to develop a consensus diagnosis and criteria for NE. A consensus meeting will be held to agree on the final terminology and criteria, and the outcome disseminated widely. DISCUSSION: A clear and consistent consensus-based definition of NE and criteria for its diagnosis, achieved by use of a modified Delphi technique, will enable more comparability of research results and improved communication among professionals and with families. IMPACT: The terms Neonatal Encephalopathy and Hypoxic Ischaemic Encephalopathy tend to be used interchangeably in the literature to describe a term newborn with signs of encephalopathy at birth. This creates difficulty in communication with families and carers, and between medical professionals and researchers, as well as creating difficulty with performance of research. The DEFINE project will use a Real-time Delphi approach to create a consensus definition for the term 'Neonatal Encephalopathy'. A definition formed by this consensus approach will be accepted and utilised by the neonatal community to improve research, outcomes, and parental experience.

4.
Stroke ; 55(2): 506-518, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252757

RESUMO

Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Criança , Adulto , Recém-Nascido , Gravidez , Humanos , Feminino , Masculino , Artérias , Sistema Nervoso Central , Mediadores da Inflamação
5.
Dev Neurosci ; 46(2): 98-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37231852

RESUMO

The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited. Here, we combined GPX1 overexpression with HT in a P9 mouse model of hypoxia-ischemia (HI) to test the effectiveness of both treatments together. Histological analysis showed that wild-type (WT) mice with HT were less injured than WT with normothermia. In the GPX1-tg mice, however, despite a lower median score in the HT-treated mice, there was no significant difference between HT and normothermia. GPX1 protein expression was higher in the cortex of all transgenic groups at 30 min and 24 h, as well as in WT 30 min after HI, with and without HT. GPX1 was higher in the hippocampus of all transgenic groups and WT with HI and normothermia, at 24 h, but not at 30 min. Spectrin 150 was higher in all groups with HI, while spectrin 120 was higher in HI groups only at 24 h. There was reduced ERK1/2 activation in both WT and GPX1-tg HI at 30 min. Thus, with a relatively moderate insult, we see a benefit with cooling in the WT but not the GPX1-tg mouse brain. The fact that we see no benefit with increased GPx1 here in the P9 model (unlike in the P7 model) may indicate that oxidative stress in these older mice is elevated to an extent that increased GPx1 is insufficient for reducing injury. The lack of benefit of overexpressing GPX1 in conjunction with HT after HI indicates that pathways triggered by GPX1 overexpression may interfere with the neuroprotective mechanisms provided by HT.


Assuntos
Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Animais , Camundongos , Humanos , Animais Recém-Nascidos , Espectrina , Hipóxia-Isquemia Encefálica/patologia , Hipóxia , Glutationa Peroxidase/metabolismo , Antioxidantes , Isquemia
6.
Pediatr Res ; 95(3): 609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952055
9.
Children (Basel) ; 10(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38002819

RESUMO

Originally approved by the U.S. Food and Drug Administration (FDA) for its antihistamine properties, clemastine can also promote white matter integrity and has shown promise in the treatment of demyelinating diseases such as multiple sclerosis. Here, we conducted an in-depth analysis of the feasibility, safety, and neuroprotective efficacy of clemastine administration in near-term lambs (n = 25, 141-143 days) following a global ischemic insult induced via an umbilical cord occlusion (UCO) model. Lambs were randomly assigned to receive clemastine or placebo postnatally, and outcomes were assessed over a six-day period. Clemastine administration was well tolerated. While treated lambs demonstrated improvements in inflammatory scores, their neurodevelopmental outcomes were unchanged.

10.
Stroke ; 54(11): 2864-2874, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37846563

RESUMO

BACKGROUND: Hypoxic-ischemic brain injury/encephalopathy affects about 1.15 million neonates per year, 96% of whom are born in low- and middle-income countries. Therapeutic hypothermia is not effective in this setting, possibly because injury occurs significantly before birth. Here, we studied the pharmacokinetics, safety, and efficacy of perinatal azithromycin administration in near-term lambs following global ischemic injury to support earlier treatment approaches. METHODS: Ewes and their lambs of both sexes (n=34, 141-143 days) were randomly assigned to receive azithromycin or placebo before delivery as well as postnatally. Lambs were subjected to severe global hypoxia-ischemia utilizing an acute umbilical cord occlusion model. Outcomes were assessed over a 6-day period. RESULTS: While maternal azithromycin exhibited relatively low placental transfer, azithromycin-treated lambs recovered spontaneous circulation faster following the initiation of cardiopulmonary resuscitation and were extubated sooner. Additionally, peri- and postnatal azithromycin administration was well tolerated, demonstrating a 77-hour plasma elimination half-life, as well as significant accumulation in the brain and other tissues. Azithromycin administration resulted in a systemic immunomodulatory effect, demonstrated by reductions in proinflammatory IL-6 (interleukin-6) levels. Treated lambs exhibited a trend toward improved neurodevelopmental outcomes while histological analysis revealed that azithromycin supported white matter preservation and attenuated inflammation in the cingulate and parasagittal cortex. CONCLUSIONS: Perinatal azithromycin administration enhances neonatal resuscitation, attenuates neuroinflammation, and supports limited improvement of select histological outcomes in an ovine model of hypoxic-ischemic brain injury/encephalopathy.


Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Masculino , Animais , Ovinos , Feminino , Gravidez , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Neuroproteção , Placenta , Ressuscitação/efeitos adversos , Hipotermia Induzida/métodos , Lesões Encefálicas/etiologia
11.
Ann Neurol ; 94(6): 1005-1007, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37755722

RESUMO

Recent insights into the frequency of occurrence and the genetic and mechanistic basis of nervous system disease have demonstrated that neurologic disorders occur as a spectrum across all ages. To meet future needs of patients with neurologic disease of all ages and prepare for increasing implementaton of precision therapies, greater integration of child and adult neurology residency training is needed. ANN NEUROL 2023;94:1005-1007.


Assuntos
Internato e Residência , Doenças do Sistema Nervoso , Neurologia , Adulto , Criança , Humanos , Neurologia/educação , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia
13.
Pediatr Neurol ; 144: 50-55, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148603

RESUMO

BACKGROUND: Children with neonatal encephalopathy (NE) are at risk for basal ganglia/thalamus (BG/T) and watershed patterns of brain injury. Children with BG/T injury are at high risk for motor impairment in infancy, but the predictive validity of a published rating scale for outcome at age four years is not known. We examined a cohort of children with NE and magnetic resonance imaging (MRI) to examine the relationship between BG/T injury and severity of cerebral palsy (CP) in childhood. METHODS: Term-born neonates at risk for brain injury due to NE were enrolled from 1993 to 2014 and received MRI within two weeks of birth. Brain injury was scored by a pediatric neuroradiologist. The Gross Motor Function Classification System (GMFCS) level was determined at four years. The relationship between BG/T injury and dichotomized GMFCS (no CP or GMFCS I to II = none/mild versus III to V = moderate/severe CP) was evaluated with logistic regression, and predictive performance was assessed by cross-validated area under the receiver operating characteristic curve (AUROC). RESULTS: Among 174 children, higher BG/T scores were associated with more severe GMFCS level. Clinical predictors had a low AUROC (0.599), compared with that of MRI (0.895). Risk of moderate to severe CP was low (<20%) in all patterns of brain injury except BG/T = 4, which carried a 67% probability (95% confidence interval 36% to 98%) of moderate to severe CP. CONCLUSIONS: The BG/T injury score can be used to predict the risk and severity of CP at age four years and thereby inform early developmental interventions.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Pessoas com Deficiência , Doenças do Recém-Nascido , Transtornos Motores , Recém-Nascido , Humanos , Criança , Pré-Escolar , Transtornos Motores/diagnóstico por imagem , Transtornos Motores/etiologia , Paralisia Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
15.
Dev Neurosci ; 44(4-5): 277-294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588703

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is the leading cause of neonatal morbidity and mortality worldwide. Approximately 1 million infants born with HIE each year survive with cerebral palsy and/or serious cognitive disabilities. While infants born with mild and severe HIE frequently result in predictable outcomes, infants born with moderate HIE exhibit variable outcomes that are highly unpredictable. Here, we describe an umbilical cord occlusion (UCO) model of moderate HIE with a 6-day follow-up. Near-term lambs (n = 27) were resuscitated after the induction of 5 min of asystole. Following recovery, lambs were assessed to define neurodevelopmental outcomes. At the end of this period, lambs were euthanized, and brains were harvested for histological analysis. Compared with prior models that typically follow lambs for 3 days, the observation of neurobehavioral outcomes for 6 days enabled identification of animals that recover significant neurological function. Approximately 35% of lambs exhibited severe motor deficits throughout the entirety of the 6-day course and, in the most severely affected lambs, developed spastic diparesis similar to that observed in infants who survive severe neonatal HIE (severe, UCOs). Importantly, and similar to outcomes in human neonates, while initially developing significant acidosis and encephalopathy, the remainder of the lambs in this model recovered normal motor activity and exhibited normal neurodevelopmental outcomes by 6 days of life (improved, UCOi). The UCOs group exhibited gliosis and inflammation in both white and gray matters, oligodendrocyte loss, neuronal loss, and cellular death in the hippocampus and cingulate cortex. While the UCOi group exhibited more cellular death and gliosis in the parasagittal cortex, they demonstrated more preserved white matter markers, along with reduced markers of inflammation and lower cellular death and neuronal loss in Ca3 of the hippocampus compared with UCOs lambs. Our large animal model of moderate HIE with prolonged follow-up will help further define pathophysiologic drivers of brain injury while enabling identification of predictive biomarkers that correlate with disease outcomes and ultimately help support development of therapeutic approaches to this challenging clinical scenario.


Assuntos
Gliose , Hipóxia-Isquemia Encefálica , Animais , Biomarcadores , Encéfalo/patologia , Feminino , Gliose/patologia , Humanos , Hipóxia-Isquemia Encefálica/patologia , Lactente , Inflamação/patologia , Isquemia , Gravidez , Ovinos
18.
Pediatr Res ; 92(2): 505-512, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34702974

RESUMO

BACKGROUND: We previously reported that increasing severity of watershed (WS) injury in neonatal magnetic resonance imaging (MRI) is associated with worse language outcomes in early childhood. In the present study, we investigated the relationship between neonatal injury patterns and cognitive profile in adolescents with neonatal encephalopathy. METHODS: Term neonates with encephalopathy were prospectively enrolled and imaged using brain MRI from 1999 to 2008. Neonatal brain injury was scored according to the degree of injury in WS and basal ganglia/thalamus (BG/T) areas. The children underwent a neurocognitive assessment and follow-up brain MRI at the age of 10-16 years. The relationship between neonatal brain injury patterns and adolescent cognitive outcomes was assessed. RESULTS: In a cohort of 16 children, neonatal MRI showed WS injury in 7, BG/T injury in 2, and normal imaging in 7. Children with WS injury had lower estimated overall cognitive ability than those with normal imaging. Increasing WS injury score was associated with decreasing estimated overall cognitive ability, Perceptual Reasoning Index, and digit span score. CONCLUSIONS: Children with the WS injury are at an increased risk of having problems in long-term intellectual ability. These cognitive outcomes may underlie early language difficulties seen in children with neonatal WS injury. IMPACT: Adolescents with a history of neonatal encephalopathy and watershed pattern of injury on neonatal brain magnetic resonance imaging (MRI) had lower overall cognitive ability, perceptual reasoning skills, and auditory working memory than those with normal neonatal imaging. Children with post-neonatal epilepsy and cerebral palsy had the worst cognitive outcomes. Watershed pattern of injury confers high long-term differences in intellectual ability.


Assuntos
Lesões Encefálicas , Epilepsia , Hipóxia-Isquemia Encefálica , Doenças do Recém-Nascido , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Criança , Pré-Escolar , Cognição , Epilepsia/patologia , Humanos , Hipóxia-Isquemia Encefálica/patologia , Recém-Nascido , Doenças do Recém-Nascido/patologia , Imageamento por Ressonância Magnética/métodos
19.
Curr Neuropharmacol ; 20(7): 1400-1412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766894

RESUMO

The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Adulto , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Sistema Nervoso Central/metabolismo , Colesterol/metabolismo , Feminino , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Recém-Nascido , Gravidez
20.
Pediatr Res ; 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537823

RESUMO

BACKGROUND: Neonatal neurocritical care (NNCC) is a rapidly advancing field with limited fellowship training available in locally developed, non-accredited programs. A standardized survey aimed to understand the training backgrounds of individuals practicing NNCC, the structure of existing clinical NNCC services/training programs, and suggested clinical competencies for new graduates. METHODS: We developed an anonymous survey electronically sent to members of societies related to NNCC. Using the survey results as a guide, we discuss a competence by design (CBD) curriculum as a complementary approach to traditional time-based training. RESULTS: There were 82 responses to the survey from 30 countries; 95% of respondents were physicians. Thirty-one (42%) institutions reported having an NNCC service, 24 (29%) individuals reported formal NNCC training, 81% reported "significant variability" across NNCC training programs, and 88% were both in favor of standardizing training programs and pursuing formal accreditation for NNCC in the next 5 years. CONCLUSIONS: The survey results demonstrate international interest in standardizing NNCC training and development of an accreditation or certification process. We propose consideration of a CBD-type curriculum as a training approach to focus on the development of specific NNCC competencies, rather than assuming the acquisition of these competencies based on time as a surrogate. IMPACT: Continued growth and development in the field of NNCC has led to increasing need for training programs suited to meet the diverse needs of trainees from varied backgrounds. We present the results of an international survey that assessed the structure of existing training programs and the priority areas in which graduates must demonstrate competence, highlighting the combination of CBD and time-based training as one approach to address these recommendations. The survey results support interest in translating published training competencies, existing expertise, and infrastructure across centers into a standardized curriculum for NNCC including certification opportunities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...