Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 56(3): B14-B17, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157858

RESUMO

Experimental nonlinear absorption data obtained using the open-aperture Z-scan technique are presented for 2, 3, 7, 8, 12, 17, 18-octaethyl-21H, 23H-porphine ruthenium (II) carbonyl in tetrahydrofuran. These data show saturation of nonlinear absorption dominating at low fluence but being overcome by induced absorption (reverse saturable absorption) at high fluence. Large-angle scattering measurements demonstrate that the induced absorption is real and not merely the result of scattering of light outside of the collection aperture of the detector by scattering centers induced at high fluence. A possible mechanism based on a four-band effective rate equation model is proposed. The model is used to accurately predict the results of Z scans taken at different pulse energies and to extract values for excited-state lifetimes and absorption cross sections from the experimental data.

2.
Appl Opt ; 56(3): B179-B183, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157880

RESUMO

Nonlinear optical properties were characterized for a series of multinuclear iridium compounds of the form TCQ[IrIII(ppz)2]n, where n=1, 2, or 3, TCQ is tricycloquinazoline, and ppz is 1-phenylpyrazole. Transient absorption (TA) spectroscopy indicated that the triplet metal-to-ligand charge transfer excited state was formed on a subpicosecond time scale and decayed back to the ground state on a microsecond time scale, consistent with precedents in the literature. TA bands were observed for all three compounds from 475 to 900 nm, implying the potential for reverse-saturable absorption (RSA) at those wavelengths. Z-scan measurements using picosecond and nanosecond pulses were obtained at 532 nm and confirmed the presence of RSA behavior for all three compounds. The triplet excited state cross sections and the RSA figure of merit were found to decrease with increasing n:1>2∼3.

3.
Opt Lett ; 40(2): 186-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679840

RESUMO

Femtosecond transient difference absorption (fs TA) measurements, together with a series of open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies, were performed on a 1,10-phenanthrolinyl iridium(III) complex bearing ligands containing a benzothiazolylfluorenyl motif. An analysis of decay data from the fs TA experiment yields a value of 1.24±0.26 ns for the singlet excited-state lifetime τ(S) of the complex. By fitting the Z scans to a five-level dynamic model incorporating the independently measured value of τ(S) and previously reported values of the complex's triplet quantum yield (0.13) and triplet excited-state lifetime (230 ns), we obtain values of 3.5×10(-17) cm(2) (singlet) and 5.0×10(-16) cm(2) (triplet) for the excited-state absorption cross-sections of the complex in toluene solution at 532 nm; the latter value represents one of the largest triplet excited-state absorption cross-sections ever reported at this wavelength. The ratio of the triplet excited-state cross-section to the ground-state absorption cross-section exceeds 3800.

4.
Opt Lett ; 35(9): 1305-7, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20436550

RESUMO

The singlet excited-state lifetime of a bipyridyl platinum(II) complex containing two alkynyl-benzothiazolylfluorene units was determined to be 145+/-105 ps by fitting femtosecond transient difference absorption data, and the triplet quantum yield was measured to be 0.14. A ground-state absorption cross section of 6.1 x 10(-19) cm(2) at 532 nm was deduced from UV-visible absorption data. Excited-state absorption cross sections of (6.7+/-0.1) x 10(-17) cm(2) (singlet) and (4.6+/-0.1) x 10(-16) cm(2) (triplet) were obtained by using a five-level dynamic model to fit open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies. For this complex, the ratio of the triplet excited-state absorption cross section to the ground-state absorption cross section--long used as a figure of merit for reverse saturable absorbers--thus stands at 754, to our knowledge the largest ever reported at 532 nm wavelength.

5.
Opt Lett ; 33(10): 1053-5, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18483509

RESUMO

The singlet excited-state lifetime of a terpyridyl platinum(II) pentynyl complex was determined to be 268+/-87 ps by fitting femtosecond transient absorption data, the triplet excited-state lifetime was found to be 62 ns by fitting nanosecond transient absorption decay data, and the triplet quantum yield was measured to be 0.16. A ground-state absorption cross section of 2.5 x 10(-19) cm(2) at 532 nm was deduced from UV-vis absorption data. Excited-state absorption cross sections of 3.5 x 10(-17) cm(2) (singlet) and 4.5 x 10(-17) cm(2) (triplet) were obtained by using a five-level dynamic model to fit open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...