Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Child Dev ; 95(1): 313-323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37525404

RESUMO

This study examined longitudinal development of prosocial behavior, assessed by the parent-reported Strength and Difficulty Questionnaire, and inhibitory control, measured by the Opposite Worlds Task, in a sample aged 9 and 12 years (n = 9468, 49.9% girls, 85.8% White) from the Avon Longitudinal Study of Parents and Children. The goal was to assess whether the level of prosocial behavior at age 9 relates to change in inhibitory control, and vice versa. Sex differences were also explored. Latent change score models showed that low inhibitory control in boys at age 9 was associated with more decreases in prosocial behavior from 9 to 12 years of age. This may suggest that interventions targeting inhibitory control in boys may also foster their social competence.


Assuntos
Altruísmo , Comportamento Social , Humanos , Criança , Masculino , Feminino , Caracteres Sexuais , Estudos Longitudinais , Pais
2.
Res Child Adolesc Psychopathol ; 52(5): 803-817, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38103132

RESUMO

Cognitive functions and psychopathology develop in parallel in childhood and adolescence, but the temporal dynamics of their associations are poorly understood. The present study sought to elucidate the intertwined development of decision-making processes and attention problems using longitudinal data from late childhood (9-10 years) to mid-adolescence (11-13 years) from the Adolescent Brain Cognitive Development (ABCD) Study (n = 8918). We utilised hierarchical drift-diffusion modelling of behavioural data from the stop-signal task, parent-reported attention problems from the Child Behavior Checklist (CBCL), and multigroup univariate and bivariate latent change score models. The results showed faster drift rate was associated with lower levels of inattention at baseline, as well as a greater reduction of inattention over time. Moreover, baseline drift rate negatively predicted change in attention problems in females, and baseline attention problems negatively predicted change in drift rate. Neither response caution (decision threshold) nor encoding- and responding processes (non-decision time) were significantly associated with attention problems. There were no significant sex differences in the associations between decision-making processes and attention problems. The study supports previous findings of reduced evidence accumulation in attention problems and additionally shows that development of this aspect of decision-making plays a role in developmental changes in attention problems in youth.


Assuntos
Atenção , Tomada de Decisões , Humanos , Feminino , Masculino , Criança , Adolescente , Estudos Longitudinais , Atenção/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Desenvolvimento do Adolescente/fisiologia
3.
Dev Cogn Neurosci ; 61: 101261, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37295068

RESUMO

Research has demonstrated associations between pubertal development and brain maturation. However, existing studies have been limited by small samples, cross-sectional designs, and inconclusive findings regarding directionality of effects and sex differences. We examined the longitudinal temporal coupling of puberty status assessed using the Pubertal Development Scale (PDS) and magnetic resonance imaging (MRI)-based grey and white matter brain structure. Our sample consisted of 8896 children and adolescents at baseline (mean age = 9.9) and 6099 at follow-up (mean age = 11.9) from the Adolescent Brain and Cognitive Development (ABCD) Study cohort. Applying multigroup Bivariate Latent Change Score (BLCS) models, we found that baseline PDS predicted the rate of change in cortical thickness among females and rate of change in cortical surface area for both males and females. We also found a correlation between baseline PDS and surface area and co-occurring changes over time in males. Diffusion tensor imaging (DTI) analyses revealed correlated change between PDS and fractional anisotropy (FA) for both males and females, but no significant associations for mean diffusivity (MD). Our results suggest that pubertal status predicts cortical maturation, and that the strength of the associations differ between sex. Further research spanning the entire duration of puberty is needed to understand the extent and contribution of pubertal development on the youth brain.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Criança , Humanos , Masculino , Feminino , Adolescente , Imagem de Tensor de Difusão/métodos , Estudos Transversais , Encéfalo , Puberdade , Substância Branca/diagnóstico por imagem
5.
Cortex ; 162: 26-37, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965337

RESUMO

Childhood mild traumatic brain injury (mTBI) is associated with elevated risk of developing social problems, which may be underpinned by changes in the structural developmental trajectory of the social brain, a network of cortical regions supporting social cognition and behavior. However, limited sample sizes and cross-sectional designs generally used in neuroimaging studies of pediatric TBI have prevented explorations of this hypothesis. This longitudinal retrospective study examined the development of parent-reported social problems and cortical thickness in social brain regions following childhood mTBI using data from the large population-based Adolescent Brain Cognitive Development (ABCD) Study. Two-group latent change score models revealed different developmental trajectories from ages 10-12 years in the level of social problems between children with (n = 345) and without (n = 7,089) mTBI. Children with mTBI showed higher, but non-clinical, levels of social problems than controls at age 10. Then, social problems decreased over 2 years, but still remained higher, but non-clinical, than in controls in which they stayed stable. Both groups showed similar decreases in social brain cortical thickness between ages 10 and 12 years. Further studies providing detailed information on the injury mechanism and acute symptoms are needed to better understand individual differences in social functioning and brain development in pediatric TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Adolescente , Criança , Humanos , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/psicologia , Estudos Retrospectivos , Estudos Transversais , Encéfalo/diagnóstico por imagem , Problemas Sociais , Lesões Encefálicas Traumáticas/diagnóstico por imagem
6.
Dev Cogn Neurosci ; 56: 101132, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816931

RESUMO

Gradients in parental socioeconomic status (SES) are closely linked to important life outcomes in children and adolescents, such as cognitive abilities, school achievement, and mental health. Parental SES may also influence brain development, with several magnetic resonance imaging (MRI) studies reporting associations with youth brain morphometry. However, MRI signal intensity metrics have not been assessed, but could offer a microstructural correlate, thereby increasing our understanding of SES influences on neurobiology. We computed a parental SES score from family income, parental education and parental occupation, and assessed relations with cortical microstructure as measured by T1w/T2w ratio (n = 504, age = 3-21 years). We found negative age-stabile relations between parental SES and T1w/T2w ratio, indicating that youths from lower SES families have higher ratio in widespread frontal, temporal, medial parietal and occipital regions, possibly indicating a more developed cortex. Effect sizes were small, but larger than for conventional morphometric properties i.e. cortical surface area and thickness, which were not significantly associated with parental SES. Youths from lower SES families had poorer language related abilities, but microstructural differences did not mediate these relations. T1w/T2w ratio appears to be a sensitive imaging marker for further exploring the association between parental SES and child brain development.


Assuntos
Idioma , Classe Social , Adolescente , Adulto , Encéfalo , Criança , Pré-Escolar , Cognição , Humanos , Pais , Adulto Jovem
7.
Curr Opin Psychol ; 44: 170-176, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34688028

RESUMO

The spatiotemporal group-level patterns of brain macrostructural development are relatively well-documented. Current research emphasizes individual variability in brain development, including its causes and consequences. Although genetic factors and prenatal and perinatal events play critical roles, calls are now made to also study brain development in transactional interplay with the different aspects of an individual's physical and social environment. Such focus is highly relevant for research on adolescence, a period involving a multitude of contextual changes paralleled by continued refinement of complex cognitive and affective neural systems. Here, we discuss associations between selected aspects of an individual's physical and social environment and adolescent brain structural development and possible links to mental health. We also touch on methodological considerations for future research.


Assuntos
Desenvolvimento do Adolescente , Encéfalo , Adolescente , Humanos , Saúde Mental , Avaliação de Resultados em Cuidados de Saúde , Meio Social
8.
Neuroimage ; 242: 118450, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358656

RESUMO

A fundamental task in neuroscience is to characterize the brain's developmental course. While replicable group-level models of structural brain development from childhood to adulthood have recently been identified, we have yet to quantify and understand individual differences in structural brain development. The present study examined inter-individual variability and sex differences in changes in brain structure, as assessed by anatomical MRI, across ages 8.0-26.0 years in 269 participants (149 females) with three time points of data (807 scans), drawn from three longitudinal datasets collected in the Netherlands, Norway, and USA. We further investigated the relationship between overall brain size and developmental changes, as well as how females and males differed in change variability across development. There was considerable inter-individual variability in the magnitude of changes observed for all examined brain measures. The majority of individuals demonstrated decreases in total gray matter volume, cortex volume, mean cortical thickness, and white matter surface area in mid-adolescence, with more variability present during the transition into adolescence and the transition into early adulthood. While most individuals demonstrated increases in white matter volume in early adolescence, this shifted to a majority demonstrating stability starting in mid-to-late adolescence. We observed sex differences in these patterns, and also an association between the size of an individual's brain structure and the overall rate of change for the structure. The present study provides new insight as to the amount of individual variance in changes in structural morphometrics from late childhood to early adulthood in order to obtain a more nuanced picture of brain development. The observed individual- and sex-differences in brain changes also highlight the importance of further studying individual variation in developmental patterns in healthy, at-risk, and clinical populations.


Assuntos
Variação Biológica da População/fisiologia , Encéfalo/crescimento & desenvolvimento , Adolescente , Adulto , Criança , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Masculino , Caracteres Sexuais , Substância Branca/crescimento & desenvolvimento , Adulto Jovem
9.
Prog Neurobiol ; 204: 102109, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147583

RESUMO

Through dynamic transactional processes between genetic and environmental factors, childhood and adolescence involve reorganization and optimization of the cerebral cortex. The cortex and its development plays a crucial role for prototypical human cognitive abilities. At the same time, many common mental disorders appear during these critical phases of neurodevelopment. Magnetic resonance imaging (MRI) can indirectly capture several multifaceted changes of cortical macro- and microstructure, of high relevance to further our understanding of the neural foundation of cognition and mental health. Great progress has been made recently in mapping the typical development of cortical morphology. Moreover, newer less explored MRI signal intensity and specialized quantitative T2 measures have been applied to assess microstructural cortical development. We review recent findings of typical postnatal macro- and microstructural development of the cerebral cortex from early childhood to young adulthood. We cover studies of cortical volume, thickness, area, gyrification, T1-weighted (T1w) tissue contrasts such a grey/white matter contrast, T1w/T2w ratio, magnetization transfer and myelin water fraction. Finally, we integrate imaging studies with cortical gene expression findings to further our understanding of the underlying neurobiology of the developmental changes, bridging the gap between ex vivo histological- and in vivo MRI studies.


Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Adolescente , Córtex Cerebral/diagnóstico por imagem , Criança , Pré-Escolar , Substância Cinzenta , Humanos , Bainha de Mielina , Substância Branca
10.
Cortex ; 138: 138-151, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33689979

RESUMO

Human cognitive development is manifold, with different functions developing at different speeds at different ages. Attention is an important domain of this cognitive development, and involves distinct developmental trajectories for separate functions, including conflict processing, selection of sensory input and alertness. In children, several studies using the Attention Network Test (ANT) have investigated the development of three attentional networks that carry out the functions of executive control, orienting and alerting. There is, however, a lack of studies on the development of these attentional components across adolescence, limiting our understanding of their protracted development. To fill this knowledge gap, we performed a mixed cross-sectional and longitudinal study using mixed methods to examine the development of the attentional components and their intraindividual variability from late childhood to young adulthood (n = 287, n observations = 408, age range = 8.5-26.7 years, mean follow up interval = 4.4 years). The results indicated that executive control stabilized during late adolescence, while orienting and alerting continued to develop into young adulthood. In addition, a continuous development into young adulthood was observed for the intraindividual variability measures of orienting and alerting. In a subsample with available magnetic resonance imaging (MRI) data (n = 169, n observations = 281), higher alerting scores were associated with thicker cortices within a right prefrontal cortical region and greater age-related cortical thinning in left rolandic operculum, while higher orienting scores were associated with greater age-related cortical thinning in frontal and parietal regions. Finally, increased consistency of orienting performance was associated with thinner cortex in prefrontal regions and reduced age-related thinning in frontal regions.


Assuntos
Função Executiva , Imageamento por Ressonância Magnética , Adolescente , Adulto , Criança , Estudos Transversais , Humanos , Estudos Longitudinais , Lobo Parietal , Adulto Jovem
11.
Cortex ; 136: 109-123, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545616

RESUMO

Emotional disorders commonly emerge in adolescence, a period characterized by changes in emotion-related processes. Thus, the ability to regulate emotions is crucial for well-being and adaptive social functioning during this period. Concurrently, the brain undergoes large structural and functional changes. We investigated relations between tendencies to use two emotion regulation strategies, cognitive reappraisal and expressive suppression, and structural development of the cerebral cortex and subcortical structures (specifically amygdala and nucleus accumbens given these structures are frequently associated with emotion regulation). A total of 112 participants (59 females) aged 8-26 were followed for up to 3 times over a 7-year period, providing 272 observations. Participants completed the Emotion Regulation Questionnaire (ERQ), yielding a measure of tendencies to use cognitive reappraisal and expressive suppression at the final time point. Linear mixed model analyses were performed to account for the longitudinal nature of the data. Contrary to expectations, volumetric growth of the amygdala and nucleus accumbens was not associated with either emotion regulation strategy. However, frequent use of expressive suppression was linked to greater regionally-specific apparent cortical thinning in both sexes, while tendency to use cognitive reappraisal was associated with greater regionally-specific apparent thinning in females and less thinning in males. Although cognitive reappraisal is traditionally associated with cognitive control regions of the brain, our results suggest it is also associated with regions involved in social cognition and semantics. The continued changes in cortical morphology and their associations with habitual use of different emotion regulation strategies indicate continued plasticity during this period, and represent an opportunity for interventions targeting emotion regulation for adolescents at risk.


Assuntos
Tonsila do Cerebelo , Emoções , Adolescente , Encéfalo , Mapeamento Encefálico , Cognição , Feminino , Humanos , Masculino
12.
Dev Cogn Neurosci ; 40: 100734, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31739096

RESUMO

Prosocial behavior, or voluntary actions that intentionally benefit others, relate to desirable developmental outcomes such as peer acceptance, while lack of prosocial behavior has been associated with several neurodevelopmental disorders. Mapping the biological foundations of prosociality may thus aid our understanding of both normal and abnormal development, yet how prosociality relates to cortical development is largely unknown. Here, relations between prosociality, as measured by the Strengths and Difficulties Questionnaire (self-report), and changes in thickness across the cortical mantle were examined using mixed-effects models. The sample consisted of 169 healthy individuals (92 females) aged 12-26 with repeated MRI from up to 3 time points, at approximately 3-year intervals (301 scans). In regions associated with social cognition and behavioral control, higher prosociality was associated with greater cortical thinning during early-to-middle adolescence, followed by attenuation of this process during the transition to young adulthood. Comparatively, lower prosociality was related to initially slower thinning, followed by comparatively protracted thinning into the mid-twenties. This study showed that prosocial behavior is associated with regional development of cortical thickness in adolescence and young adulthood. The results suggest that the rate of thinning in these regions, as well as its timing, may be factors related to prosocial behavior.


Assuntos
Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Comportamento Social , Adolescente , Adulto , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Adulto Jovem
13.
Cereb Cortex ; 29(9): 3879-3890, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30357317

RESUMO

The human cerebral cortex is highly regionalized, and this feature emerges from morphometric gradients in the cerebral vesicles during embryonic development. We tested if this principle of regionalization could be traced from the embryonic development to the human life span. Data-driven fuzzy clustering was used to identify regions of coordinated longitudinal development of cortical surface area (SA) and thickness (CT) (n = 301, 4-12 years). The principal divide for the developmental SA clusters extended from the inferior-posterior to the superior-anterior cortex, corresponding to the major embryonic morphometric anterior-posterior (AP) gradient. Embryonic factors showing a clear AP gradient were identified, and we found significant differences in gene expression of these factors between the anterior and posterior clusters. Further, each identified developmental SA and CT clusters showed distinguishable life span trajectories in a larger longitudinal dataset (4-88 years, 1633 observations), and the SA and CT clusters showed differential relationships to cognitive functions. This means that regions that developed together in childhood also changed together throughout life, demonstrating continuity in regionalization of cortical changes. The AP divide in SA development also characterized genetic patterning obtained in an adult twin sample. In conclusion, the development of cortical regionalization is a continuous process from the embryonic stage throughout life.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
14.
Dev Psychol ; 54(9): 1745-1757, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30058815

RESUMO

Basic perspective taking and mentalizing abilities develop in childhood, but recent studies indicate that the use of social perspective taking to guide decisions and actions has a prolonged development that continues throughout adolescence. Here, we aimed to replicate this research and investigate the hypotheses that individual differences in social perspective taking in adolescence are associated with real-life prosocial and antisocial behavior and differences in brain structure. We used an experimental approach and a large cross-sectional sample (n = 293) of participants aged 7-26 years old to assess age-related improvement in social perspective taking usage during performance of a version of the director task. In subsamples, we then tested how individual differences in social perspective taking were related to self-reported prosocial behavior and peer relationship problems on the Strengths and Difficulties Questionnaire (n = 184) and to MRI measures of regional cortical thickness and surface area (n = 226). The pattern of results in the director task replicated previous findings by demonstrating continued improvement in use of social perspective taking across adolescence. The study also showed that better social perspective taking usage is associated with more self-reported prosocial behavior, as well as to thinner cerebral cortex in regions in the left hemisphere encompassing parts of the caudal middle frontal and precentral gyri and lateral parietal regions. These associations were observed independently of age and might partly reflect individual developmental variability. The relevance of cortical development was additionally supported by indirect effects of age on social perspective taking usage via cortical thickness. (PsycINFO Database Record


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Comportamento Social , Teoria da Mente , Adolescente , Adulto , Córtex Cerebral/anatomia & histologia , Criança , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Testes Psicológicos , Tempo de Reação , Autorrelato , Adulto Jovem
15.
Child Dev ; 89(3): 811-822, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29313947

RESUMO

How personality traits relate to structural brain changes in development is an important but understudied question. In this study, cortical thickness (CT) and surface area (SA), estimated using magnetic resonance imaging (MRI), were investigated in 99 participants aged 8-19 years. Follow-up MRI data were collected after on average 2.6 years for 74 individuals. The Big Five personality traits were related to longitudinal regional CT or SA development, but limited cross-sectional relations were observed. Conscientiousness, emotional stability, and imagination were associated with more age-expected cortical thinning over time. The results suggest that the substantial individual variability observed in personality traits may partly be explained by cortical maturation across adolescence, implying a developmental origin for personality-brain relations observed in adults.


Assuntos
Córtex Cerebral/anatomia & histologia , Neuroimagem/métodos , Personalidade/fisiologia , Adolescente , Adulto , Fatores Etários , Córtex Cerebral/diagnóstico por imagem , Criança , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 113(33): 9357-62, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27432992

RESUMO

Neurodevelopmental origins of functional variation in older age are increasingly being acknowledged, but identification of how early factors impact human brain and cognition throughout life has remained challenging. Much focus has been on age-specific mechanisms affecting neural foundations of cognition and their change. In contrast to this approach, we tested whether cerebral correlates of general cognitive ability (GCA) in development could be extended to the rest of the lifespan, and whether early factors traceable to prenatal stages, such as birth weight and parental education, may exert continuous influences. We measured the area of the cerebral cortex in a longitudinal sample of 974 individuals aged 4-88 y (1,633 observations). An extensive cortical region was identified wherein area related positively to GCA in development. By tracking area of the cortical region identified in the child sample throughout the lifespan, we showed that the cortical change trajectories of higher and lower GCA groups were parallel through life, suggesting continued influences of early life factors. Birth weight and parental education obtained from the Norwegian Mother-Child Cohort study were identified as such early factors of possible life-long influence. Support for a genetic component was obtained in a separate twin sample (Vietnam Era Twin Study of Aging), but birth weight in the child sample had an effect on cortical area also when controlling for possible genetic differences in terms of parental height. Our results provide novel evidence for stability in brain-cognition relationships throughout life, and indicate that early life factors impact brain and cognition for the entire life course.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Cognição , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Peso ao Nascer , Córtex Cerebral/anatomia & histologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Relações Mãe-Filho , Adulto Jovem
17.
Proc Natl Acad Sci U S A ; 112(50): 15462-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26575625

RESUMO

There is a growing realization that early life influences have lasting impact on brain function and structure. Recent research has demonstrated that genetic relationships in adults can be used to parcellate the cortex into regions of maximal shared genetic influence, and a major hypothesis is that genetically programmed neurodevelopmental events cause a lasting impact on the organization of the cerebral cortex observable decades later. Here we tested how developmental and lifespan changes in cortical thickness fit the underlying genetic organizational principles of cortical thickness in a longitudinal sample of 974 participants between 4.1 and 88.5 y of age with a total of 1,633 scans, including 773 scans from children below 12 y. Genetic clustering of cortical thickness was based on an independent dataset of 406 adult twins. Developmental and adult age-related changes in cortical thickness followed closely the genetic organization of the cerebral cortex, with change rates varying as a function of genetic similarity between regions. Cortical regions with overlapping genetic architecture showed correlated developmental and adult age change trajectories and vice versa for regions with low genetic overlap. Thus, effects of genes on regional variations in cortical thickness in middle age can be traced to regional differences in neurodevelopmental change rates and extrapolated to further adult aging-related cortical thinning. This finding suggests that genetic factors contribute to cortical changes through life and calls for a lifespan perspective in research aimed at identifying the genetic and environmental determinants of cortical development and aging.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Genes , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Peso ao Nascer , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Longevidade , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...