Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(7): e4106, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259174

RESUMO

Historical horticultural plant sales influence native and nonnative species assemblages in contemporary ecosystems. Over half of nonnative, invasive plants naturalized in the United States were introduced as ornamentals, and the spatial and temporal patterns of early introduction undoubtedly influence current invasion ecology. While thousands of digitized nursery catalogs documenting these introductions are publicly available, they have not been standardized in a single database. To fill this gap, we obtained the names of all plant taxa (species, subspecies, and varieties) present in the Biodiversity Heritage Library's (BHL) Seed and Nursery Catalog Collection. We then searched the BHL database for these names and downloaded all available records. We combined BHL records with data from an encyclopedia of heirloom ornamental plants to create a single database of historical nursery sales in the US. Each record represents an individual taxon offered for sale at an individual time in a specific nursery's catalog. We standardized records to the current World Flora Online (http://worldfloraonline.org) accepted taxonomy and appended accepted USDA code, growth habit, and introduction status. We also appended whether taxa were reported as invasive in the Global Plant Invaders (GPI) data set or the Global Invasive Species Database (GISD) or regulated in the conterminous US. Lastly, we geocoded all reported publication locations. The data set contains 2,445,875 records from nurseries in at least 2795 unique locations, with the majority of catalogs published between 1890 and 1950. Nurseries were located in all conterminous states but were concentrated in the eastern US and California. We identified 19,140 unique horticultural taxa, of which 8642 matched taxa in the USDA Plants database. The USDA Plants database is limited to native and naturalized taxa in the US. Native or introduced status was listed in USDA Plants for 7018 of included taxa, while 1642 had an unknown status. The remaining 10,498 taxa are not naturalized according to USDA Plants or are of varieties of native and introduced taxa that did not match USDA Plants taxonomy. The majority of taxa in the Historical Plant Sales (HPS) database with an identified status are native (65.5%; 4596 of 7018 taxa), of which 393 taxa are reported as invasive outside of the US. Of the 2381 introduced taxa, 1103 (46.3%) are reported as invasive somewhere globally. Despite a richer pool of native taxa, most cataloged plant records with an identified status were of introduced taxa (54.1%; 1,045,684 of 1,933,925 records). Plants reported as invasive somewhere globally comprised a large portion of records with an identified status (38.7%; 747,953 of 1,933,925 records) underscoring the large role of ornamental introductions in facilitating plant invasions. The HPS database provides a consolidated and standardized perspective on the history of native, introduced, and invasive plant sales in the US. We release these data into the public domain under a Creative Commons Zero license waiver (https://creativecommons.org/share-your-work/publicdomain/cc0/). Individuals who use these data for publication may cite the associated data paper.


Assuntos
Comércio , Plantas , Humanos , Biodiversidade , Ecologia , Ecossistema , Espécies Introduzidas , Estados Unidos
2.
Ecol Appl ; 33(2): e2776, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36315354

RESUMO

Invasive plants are a prominent threat to ecosystems and economies worldwide. Knowing the identity of invasive plants is critical for preventing their introduction and spread. Yet several lines of evidence, including spatial and taxonomic biases in reporting and the ongoing emergence of new invasives, suggest that we are missing basic information about the identity of invasive plants. Using a database of invasive plants reported in the peer-reviewed literature between 1959 and 2020, we examined trends in the accumulation of new invasive plants over time and estimated the size of the current pool of invasive plants both continentally and globally. The number of new invasive plants continues to increase exponentially over time, showing no sign of saturation, even in the best studied regions. Moreover, a sample-size based rarefaction-extrapolation curve of reported taxa suggests that what is documented in the current literature (3008 taxa) only captures 64% of the likely number of invasive plants globally (4721 taxa ± 132 SE). These estimates varied continentally; less than half of invasive plant taxa have likely been identified in Oceania and Central and South Americas. Studies that included multiple invasive plants (e.g., floristic studies) were much more efficient at adding new taxa to our global understanding of what is invasive (identifying 4.2 times more new taxa than single-taxon studies). With more potential invaders arriving every day, this analysis highlights a critical gap in our knowledge of the current invasive plant pool. Expanding invasion science to better encompass understudied geographic areas and increasing the numbers of floristic surveys would greatly improve our ability to accurately and efficiently identify what taxa are invasive. Preventing invasive plant introductions is incumbent upon knowing the identity of invasive plants. Thus, large knowledge gaps remain in invasion ecology that hinder efforts to proactively prevent and manage invasive plants.


Assuntos
Ecossistema , Plantas , Ecologia , América do Sul
3.
Am J Bot ; 108(9): 1692-1704, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519029

RESUMO

PREMISE: Although chestnuts and chinquapins are some of the best known and most widely loved of any plants in North America, relatively little genomic sequencing has been done, and much is still unknown about their evolution. METHODS: We used double-digest restriction-site-associated DNA (ddRAD) sequencing data to infer the species-level phylogeny for Castanea and assess the phylogeography of the North American species using samples collected from populations that span the full extent of the species' ranges. We also constructed species distribution models using digitized herbarium specimens and observational data from field surveys. RESULTS: We identified strong population structure within Castanea dentata (American chestnut) that reflects a stepwise northern migration since the last glacial maximum. Our species distribution models further confirmed this scenario and matched closely with the Castanea fossil pollen record. We also found significant structure within the Castanea pumila lineage, most notably a genetic cluster that corresponds to the frequently recognized Castanea pumila var. ozarkensis. CONCLUSIONS: The two North American Castanea species have contrasting patterns of population structure, but each is typical of plant phylogeography in North America. Within the C. pumila complex, we found novel genetic structure that provides new insights about C. pumila taxonomy. Our results also identified a series of distinctive populations that will be valuable in ongoing efforts to conserve and restore chestnuts and chinquapins in North America.


Assuntos
Fagaceae , Sequência de Bases , Fagaceae/genética , Variação Genética , Filogenia , Filogeografia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA