Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 111(13): 2527-41, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17388346

RESUMO

The reactions of hydrated electron (eaq-) with various radicals have been studied in pulse radiolysis experiments. These radicals are hydroxyl radical (*OH), sulfite radical anion (*SO3-), carbonate radical anion (CO3*-), carbon dioxide radical anion (*CO2-), azidyl radical (*N3), dibromine radical anion (Br2*-), diiodine radical anion (I2*-), 2-hydroxy-2-propyl radical (*C(CH3)2OH), 2-hydroxy-2-methyl-1-propyl radical ((*CH2)(CH3)2COH), hydroxycyclohexadienyl radical (*C6H6OH), phenoxyl radical (C6H5O*), p-methylphenoxyl radical (p-(H3C)C6H4O*), p-benzosemiquinone radical anion (p-OC6H4O*-), and phenylthiyl radical (C6H5S*). The kinetics of eaq- was followed in the presence of the counter radicals in transient optical absorption measurements. The rate constants of the eaq- reactions with radicals have been determined over a temperature range of 5-75 degrees C from the kinetic analysis of systems of multiple second-order reactions. The observed high rate constants for all the eaq- + radical reactions have been analyzed with the Smoluchowski equation. This analysis suggests that many of the eaq- + radical reactions are diffusion-controlled with a spin factor of 1/4, while other reactions with *OH, *N3, Br2*-, I2*-, and C6H5S* have spin factors significantly larger than 1/4. Spin dynamics for the eaq-/radical pairs is discussed to explain the different spin factors. The reactions with *OH, *N3, Br2*-, and I2*- have also been found to have apparent activation energies less than that for diffusion control, and it is suggested that the spin factors for these reactions decrease with increasing temperature. Such a decrease in spin factor may reflect a changing competition between spin relaxation/conversion and diffusive escape from the radical pairs.

2.
J Phys Chem A ; 110(38): 11046-52, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16986837

RESUMO

The reaction of the alpha-hydroxyalkyl radical of 2-propanol (1-hydroxy-1-methylethyl radical) with nitrite ions was characterized. A product of the reaction was assigned as the adduct nitro radical anion, [HO-C(CH(3))(2)NO(2)](*-). This radical was identified using time-resolved electron spin resonance (TRESR). The radical's magnetic parameters, the nitrogen hyperfine coupling constant (a(N) = 26.39 G), and its g-factor (2.0052) were the same as those of the nitro radical anion previously discovered in (*)OH spin-trapping experiments with the aci-anion of (CH(3))(2)CHNO(2). Production of [HO-C(CH(3))(2)NO(2)](*-) was determined to be 38% +/- 4% of the reaction of (CH(3))(2)C(*)-OH with nitrite. The reason why this fraction was less than 100% was rationalized by invoking the competitive addition at oxygen, which forms [HO-C(CH(3))(2)ONO](*-), followed by a rapid loss of (*)NO. Furthermore, by taking this mechanism into account, the bimolecular rate constant for the total reaction of (CH(3))(2)C(*)-OH with nitrite at reaction pH 7 was determined to be 1.6 x 10(6) M(-1) s(-1), using both decay traces of (CH(3))(2)C(*)-OH and growth traces of [HO-C(CH(3))(2)NO(2)](*-). This correspondence further confirms the nature of the reaction. The reaction mechanism is discussed with guidance by computations using density functional theory.

3.
J Am Chem Soc ; 125(26): 7959-63, 2003 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12823017

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy was used to study the interactions between stable free radicals and gold nanoparticles. The nitroxyl free radicals used were TEMPO, TEMPAMINE, and TEMPONE. Two sizes of Au particles, 15 and 2.5 nm in diameter, were synthesized to investigate the interactions with the metallic particles. We find that the EPR signal is reduced upon adsorption of the radicals onto the 15 nm Au particle surface. Despite the strong adsorption of TEMPAMINE on the particles, the signal intensity recovers upon the introduction of a high concentration of ethanolamine to the solution. The signal reduction was proportional to the concentration of Au particles, and the signal totally disappeared at high concentrations of Au particles. Possible explanations of the signal reduction are discussed in this Article. We propose that the reduction in signal intensity arises from exchange interactions between the unpaired electrons of the adsorbed radicals and conduction-band electrons of the metallic particles. In addition, in the presence of oxygen, the adsorbed TEMPAMINE radicals are catalytically oxidized to the carbonyl derivative, TEMPONE. A mechanism for this unexpected catalytic reaction is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA