Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 292(5520): 1329-33, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11359001

RESUMO

At least 16 fragments were detected in images of comet C/1999 S4 (LINEAR) taken on 5 August 2000 with the Hubble Space Telescope (HST) and on 6 August with the Very Large Telescope (VLT). Photometric analysis of the fragments indicates that the largest ones have effective spherical diameters of about 100 meters, which implies that the total mass in the observed fragments was about 2 x 10(9) kilograms. The comet's dust tail, which was the most prominent optical feature in August, was produced during a major fragmentation event, whose activity peaked on UT 22.8 +/- 0.2 July 2000. The mass of small particles (diameters less than about 230 micrometers) in the tail was about 4 x 10(8) kilograms, which is comparable to the mass contained in a large fragment and to the total mass lost from water sublimation after 21 July 2000 (about 3 x 10(8) kilograms). HST spectroscopic observations during 5 and 6 July 2000 demonstrate that the nucleus contained little carbon monoxide ice (ratio of carbon monoxide to water is less than or equal to 0.4%), which suggests that this volatile species did not play a role in the fragmentation of C/1999 S4 (LINEAR).

2.
Science ; 292(5520): 1339-43, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11359003

RESUMO

The gas activity of comet C/1999 S4 (LINEAR) was monitored at radio wavelengths during its disruption. A runaway fragmentation of the nucleus may have begun around 18 July 2000 and proceeded until 23 July. The mass in small icy debris (

3.
Science ; 275(5308): 1900-4, 1997 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-9072959

RESUMO

Analysis of Hubble Space Telescope (HST) images of comet Hale-Bopp (C/1995 O1) suggests that the effective diameter of the nucleus is between 27 to 42 kilometers, which is at least three times larger than that of comet P/Halley. The International Ultraviolet Explorer and HST spectra showed emissions from OH (a tracer of H2O) and CS (a tracer of CS2) starting in April 1996, and from the CO Cameron system (which primarily traces CO2) starting in June 1996. The variation of the H2O production rate with heliocentric distance was consistent with sublimation of an icy body near its subsolar point. The heliocentric variation in the production rates of CS2 and dust was different from that of H2O, which implies that H2O sublimation did not control the CS2 or dust production during these observations.


Assuntos
Meteoroides , Dióxido de Carbono/análise , Dissulfeto de Carbono/análise , Poeira Cósmica , Análise Espectral , Água
4.
Nature ; 373(6515): 592-5, 1995 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-7854414

RESUMO

In July 1994, the collisions of the fragments of comet Shoemaker-Levy 9 with Jupiter resulted in dramatic changes in the planet's atmosphere. Observations of the events suggest that the composition and thermal properties of the atmosphere were considerably modified at the impact sites, with the changes persisting for times lasting from minutes to weeks (see, for example, refs 1-4). Here we report observations of the impact sites at millimetre wave-lengths, which reveal strong emission lines associated with carbon monoxide, carbonyl sulphide and carbon monosulphide. The abundance of carbon monoxide in the jovian atmosphere is normally very low; carbonyl sulphide and carbon monosulphide, on the other hand, have not hitherto been detected. We find that the largest fragments (G and K) each produced approximately 10(14) g of carbon monoxide, 3 x 10(12) g of carbonyl sulphide and 3 x 10(11) g of carbon monosulphide, most probably by shock-induced chemical reactions. Our observations also place firm constraints on the thermal response of Jupiter's stratosphere to the impacts.


Assuntos
Compostos Inorgânicos de Carbono , Meio Ambiente Extraterreno , Júpiter , Atmosfera , Carbono , Monóxido de Carbono , Sulfetos , Óxidos de Enxofre , Temperatura
5.
Science ; 261(5129): 1713-6, 1993 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17794876

RESUMO

Thermal continuum emission from the Pluto-Charon system has been detected at wavelents of 800 and 1300 micrometers, and significant upper limits have been obtained at 450 and 1100 micrometers. After the subtraction of emission from Charon, the deduced surface temperature of much of Pluto is between 30 and 44 kein, probably near 35 to 37 kelvin. This range is significantly cooler than what radiative equilibrium models have suged and cooler than the surface temperature derived by the Infrared Astronomy Satellite. The low temperature indicates that methane cannot be present at the microbar pressure levels indicated by the 1988 stellar occultation measurements and that the methane features in Pluto's spectrum are from solid, not gas-phase, absorptions. This result is evidence that Pluto's atmosphere is dominated by nitrogen or carbon monoxide rather than methane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...