Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(8): e1010350, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36044516

RESUMO

Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy.


Assuntos
Infecções por Coxsackievirus , Enterovirus , Vesículas Extracelulares , Pancreatite , Doença Aguda , Proteínas Reguladoras de Apoptose/genética , Autofagia , Enterovirus/genética , Enterovirus Humano B/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , RNA de Cadeia Dupla , RNA Interferente Pequeno , Replicação Viral/genética
2.
Immunotargets Ther ; 9: 333-350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365281

RESUMO

INTRODUCTION: This study was designed to explore the role of acetylcholine (ACh) in pulmonary viral infection and recovery. Inflammatory control is critical to recovery from respiratory viral infection. ACh secreted from non-neuronal sources, including lymphocytes, plays an important, albeit underappreciated, role in regulating immune-mediated inflammation. METHODS: ACh and lymphocyte cholinergic status in the lungs were measured over the course of influenza infection and recovery. The role of ACh was examined by inhibiting ACh synthesis in vivo. Pulmonary inflammation was monitored by Iba1 immunofluorescence, using a novel automated algorithm. Tissue repair was monitored histologically. RESULTS: Pulmonary ACh remained constant through the early stage of infection and increased during the peak of the acquired immune response. As the concentration of ACh increased, cholinergic lymphocytes appeared in the BAL and lungs. Cholinergic capacity was found primarily in CD4 T cells, but also in B cells and CD8 T cells. The cholinergic CD4+ T cells bound to influenza-specific tetramers and were retained in the resident memory regions of the lung up to 2 months after infection. Histologically, cholinergic lymphocytes were found in direct physical contact with activated macrophages throughout the lung. Inflammation was monitored by ionized calcium-binding adapter molecule 1 (Iba1) immunofluorescence, using a novel automated algorithm. When ACh production was inhibited, mice exhibited increased tissue inflammation and delayed recovery. Histologic examination revealed abnormal tissue repair when ACh was limited. CONCLUSION: These findings point to a previously unrecognized role for ACh in the transition from active immunity to recovery and pulmonary repair following respiratory viral infection.

3.
Viruses ; 12(4)2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231022

RESUMO

Coxsackievirus B (CVB) is a common human enterovirus that causes systemic infection but specifically replicates to high titers in the pancreas. It was reported that certain viruses induce mitochondrial fission to support infection. We documented that CVB triggers mitochondrial fission and blocking mitochondrial fission limits infection. The transient receptor potential channels have been implicated in regulating mitochondrial dynamics; namely, the heat and capsaicin receptor transient receptor potential cation channel subfamily V member 1 (TRPV1) contributes to mitochondrial depolarization and fission. When we transiently warmed HeLa cells to 39 °C prior to CVB exposure, infection was heightened, whereas cooling cells to 25 °C reduced infection. Inducing "cold" by stimulating transient receptor potential cation channel subfamily M member 8 (TRPM8) with menthol led to reduced infection and also resulted in lower levels of mitochondrial fission during infection. Additionally, menthol stabilized levels of mitochondrial antiviral signaling (MAVS) which is known to be tied to mitochondrial dynamics. Taken together, this highlights a novel pathway wherein CVB relies on TRPV1 to initiate proviral mitochondrial fission, which may contribute to the disruption of antiviral immunity. TRPM8 has been shown to antagonize TRPV1, and thus we hypothesize that stimulating TRPM8 blocks TRPV1-mediated mitochondrial fragmentation following CVB exposure and attenuates infection.


Assuntos
Antivirais/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/fisiologia , Mentol/farmacologia , Animais , Células Cultivadas , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Temperatura , Replicação Viral/efeitos dos fármacos
4.
Virology ; 529: 169-176, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30711774

RESUMO

Coxsackievirus B is a significant human pathogen and is a leading cause of myocarditis. We and others have observed that certain enteroviruses including coxsackievirus B cause infected cells to shed extracellular vesicles containing infectious virus. Recent reports have shown that vesicle-bound virus can infect more efficiently than free virus. Though microRNAs are differentially regulated in cells following infection, few have been associated with the vesicles shed from infected cells. Here we report exclusive trafficking of specific microRNAs into viral vesicles compared to vesicles from non-infected cells. We found that the most highly-expressed unique microRNA in viral vesicles was miR-590-5p, which facilitates prolonged viral replication by blocking apoptotic factors. Cells over-expressing this miR were significantly more susceptible to infection. This may be a mechanism by which coxsackievirus B boosts subsequent rounds of infection by co-packaging virus and a select set of pro-viral microRNAs in extracellular vesicles.


Assuntos
Enterovirus Humano B/fisiologia , MicroRNAs/fisiologia , Replicação Viral/fisiologia , Enterovirus Humano B/genética , Células HeLa , Humanos , RNA Mensageiro/metabolismo
5.
Am J Pathol ; 188(12): 2853-2862, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273599

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons in the cerebral cortex, brainstem, and spinal cord, leading to progressive paralysis and eventual death. Approximately 95% of all ALS cases are sporadic without known causes. Enteroviruses have been suspected to play a role in ALS because of their ability to target motor neurons and to cause muscle weakness and paralysis. In vitro enteroviral infection results in cytoplasmic aggregation and cleavage of transactive response DNA binding protein-43, a pathologic hallmark of ALS. However, whether enteroviral infection can induce ALS-like pathologies in vivo remains to be characterized. In this study, neonatal BALB/C mice were intracranially inoculated with either a recombinant coxsackievirus B3 expressing enhanced green fluorescent protein or mock-infected for 2, 5, 10, 30, and 90 days. Histologic and immunohistochemical analysis of brain tissues demonstrated sustained inflammation (microglia and astrogliosis) and lesions in multiple regions of the brain (hippocampus, cerebral cortex, striatum, olfactory bulb, and putamen) in parallel with virus detection as early as 2 days for up to 90 days after infection. Most notably, ALS-like pathologies, including cytoplasmic mislocalization of transactive response DNA binding protein-43, p62-, and ubiquitin-positive inclusions, were observed in the areas of infection. These data provide the first pathologic evidence to support a possible link between enteroviral infection and ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/imunologia , Infecções por Coxsackievirus/complicações , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Células Cultivadas , Infecções por Coxsackievirus/virologia , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico
6.
Front Mol Neurosci ; 11: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593492

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily attacks motor neurons in the brain and spinal cord, leading to progressive paralysis and ultimately death. Currently there is no effective therapy. The majority of ALS cases are sporadic, with no known family history; unfortunately the etiology remains largely unknown. Contribution of Enteroviruses (EVs), a family of positive-stranded RNA viruses including poliovirus, coxsackievirus, echovirus, enterovirus-A71 and enterovirus-D68, to the development of ALS has been suspected as they can target motor neurons, and patients with prior poliomyelitis show a higher risk of motor neuron disease. Multiple efforts have been made to detect enteroviral genome in ALS patient tissues over the past two decades; however the clinical data are controversial and a causal relationship has not yet been established. Recent evidence from in vitro and animal studies suggests that enterovirus-induced pathology remarkably resembles the cellular and molecular phenotype of ALS, indicating a possible link between enteroviral infection and ALS pathogenesis. In this review, we summarize the nature of enteroviral infection, including route of infection, cells targeted, and viral persistence within the central nervous system (CNS). We review the molecular mechanisms underlying viral infection and highlight the similarity between viral pathogenesis and the molecular and pathological features of ALS, and finally, discuss the potential role of enteroviral infection in frontotemporal dementia (FTD), a disease that shares common clinical, genetic, and pathological features with ALS, and the significance of anti-viral therapy as an option for the treatment of ALS.

7.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978702

RESUMO

Coxsackievirus B (CVB) is a common enterovirus that can cause various systemic inflammatory diseases. Because CVB lacks an envelope, it has been thought to be inherently cytolytic, wherein CVB can escape from the infected host cell only by causing it to rupture. In recent years, however, we and others have observed that various naked viruses, such as CVB, can trigger the release of infectious extracellular microvesicles (EMVs) that contain viral material. This mode of cellular escape has been suggested to allow the virus to be masked from the adaptive immune system. Additionally, we have previously reported that these viral EMVs have LC3, suggesting that they originated from autophagosomes. We now report that CVB-infected cells trigger DRP1-mediated fragmentation of mitochondria, which is a precursor to autophagic mitochondrial elimination (mitophagy). However, rather than being degraded by lysosomes, mitochondrion-containing autophagosomes are released from the cell. We believe that CVB localizes to mitochondria, induces mitophagy, and subsequently disseminates from the cell in an autophagosome-bound mitochondrion-virus complex. Suppressing the mitophagy pathway in HL-1 cardiomyocytes with either small interfering RNA (siRNA) or Mdivi-1 caused marked reduction in virus production. The findings in this study suggest that CVB subverts mitophagy machinery to support viral dissemination in released EMVs.IMPORTANCE Coxsackievirus B (CVB) can cause a number of life-threatening inflammatory diseases. Though CVB is well known to disseminate via cytolysis, recent reports have revealed a second pathway in which CVB can become encapsulated in host membrane components to escape the cell in an exosome-like particle. Here we report that these membrane-bound structures derive from mitophagosomes. Blocking various steps in the mitophagy pathway reduced levels of intracellular and extracellular virus. Not only does this study reveal a novel mechanism of picornaviral dissemination, but also it sheds light on new therapeutic targets to treat CVB and potentially other picornaviral infections.


Assuntos
Autofagossomos/virologia , Enterovirus Humano B/fisiologia , Interações Hospedeiro-Patógeno , Mitofagia , Miócitos Cardíacos/virologia , Autofagia , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular/metabolismo , Humanos , Mitocôndrias/virologia , Miócitos Cardíacos/patologia , RNA Interferente Pequeno , Replicação Viral
9.
Virology ; 484: 288-304, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26142496

RESUMO

Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses - although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis.


Assuntos
Infecções por Coxsackievirus/virologia , Enterovirus/fisiologia , Internalização do Vírus , Liberação de Vírus , Replicação Viral , Autofagia , Enterovirus/patogenicidade , Humanos , Evasão da Resposta Imune , Tropismo Viral
10.
PLoS Pathog ; 10(7): e1004249, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25079373

RESUMO

Coxsackievirus B (CVB) is an enterovirus that most commonly causes a self-limited febrile illness in infants, but cases of severe infection can manifest in acute myocarditis. Chronic consequences of mild CVB infection are unknown, though there is an epidemiologic association between early subclinical infections and late heart failure, raising the possibility of subtle damage leading to late-onset dysfunction, or chronic ongoing injury due to inflammatory reactions during latent infection. Here we describe a mouse model of juvenile infection with a subclinical dose of coxsackievirus B3 (CVB3) which showed no evident symptoms, either immediately following infection or in adult mice. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected adult mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. Evaluation of the vasculature in the hearts of adult mice subjected to cardiac stress showed a compensatory increase in CD31+ blood vessel formation, although this effect was suppressed in juvenile-infected mice. Moreover, CVB3 efficiently infected juvenile c-kit+ cells, and cardiac progenitor cell numbers were reduced in the hearts of juvenile-infected adult mice. These results suggest that the exhausted cardiac progenitor cell pool following juvenile CVB3 infection may impair the heart's ability to increase capillary density to adapt to increased load.


Assuntos
Infecções por Coxsackievirus/patologia , Enterovirus Humano B/patogenicidade , Fibrose/patologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Feminino , Fibrose/virologia , Coração/virologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/virologia , Células-Tronco/virologia , Estresse Fisiológico
11.
Biomaterials ; 35(35): 9554-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154663

RESUMO

Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140 to 180 nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4 × higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations.


Assuntos
Adenoviridae/isolamento & purificação , Lecitinas/química , Lipossomos/química , Adenoviridae/classificação , Animais , Linhagem Celular Tumoral , Terapia Genética/métodos , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos da Linhagem 129 , Terapia Viral Oncolítica , Transfecção
12.
PLoS Pathog ; 10(4): e1004045, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722773

RESUMO

Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, "fluorescent timer" protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. "Fluorescent timer" protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of "fluorescent timer" protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. "Fluorescent timer" protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured "fluorescent timer" protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic iodixanol gradient fractions consistent with membrane association. The preferential detection of the lipidated form of LC3 protein (LC3 II) in released EMVs harboring infectious virus suggests that the autophagy pathway plays a crucial role in microvesicle shedding and virus release, similar to a process previously described as autophagosome-mediated exit without lysis (AWOL) observed during poliovirus replication. Through the use of this novel recombinant virus which provides more dynamic information from static fluorescent images, we hope to gain a better understanding of CVB3 tropism, intracellular membrane reorganization, and virus-associated microvesicle dissemination within the host.


Assuntos
Micropartículas Derivadas de Células/virologia , Enterovirus Humano B/fisiologia , Infecções por Enterovirus/metabolismo , Fagossomos/virologia , Eliminação de Partículas Virais/fisiologia , Animais , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/metabolismo , Infecções por Enterovirus/genética , Células HeLa , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/genética , Fagossomos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Lab Invest ; 94(2): 161-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24378643

RESUMO

Coxsackievirus B3 (CVB3) and lymphocytic choriomeningitis virus (LCMV) are both neurotropic RNA viruses, which can establish a persistent infection and cause meningitis and encephalitis in the neonatal host. Utilizing our neonatal mouse model of infection, we evaluated the consequences of early viral infection upon the host central nervous system (CNS) by comparing CVB3 and LCMV infection. Both viruses expressed high levels of viral protein in the choroid plexus and subventricular zone (SVZ), a region of neurogenesis. LCMV infected a greater number of cells in the SVZ and targeted both nestin(+) (neural progenitor cell marker) and olig2(+) (glial progenitor marker) cells at a relatively equal proportion. In contrast, CVB3 preferentially infected nestin(+) cells within the SVZ. Microarray analysis revealed differential kinetics and unique host gene expression changes for each infection. MHC class I gene expression, several developmental-related Hox genes, and transthyretin (TTR), a protein secreted in the cerebrospinal fluid by the choroid plexus, were specifically downregulated following CVB3 infection. Also, we identified severe pathology in the choroid plexus of CVB3-infected animals at 48 h post infection accompanied by a decrease in the level of TTR and carbonic anhydrase II. These results demonstrate broader neural progenitor and stem cell (NPSC) tropism for LCMV in the neonatal CNS, whereas CVB3 targeted a more specific subset of NPSCs, stimulated a distinct early immune response, and induced significant acute damage in the choroid plexus.


Assuntos
Sistema Nervoso Central/virologia , Plexo Corióideo/patologia , Infecções por Coxsackievirus/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Coriomeningite Linfocítica/imunologia , Células-Tronco Neurais/fisiologia , Animais , Anidrase Carbônica II/metabolismo , Plexo Corióideo/metabolismo , Infecções por Coxsackievirus/patologia , Imunofluorescência , Regulação da Expressão Gênica/genética , Coriomeningite Linfocítica/patologia , Camundongos , Análise em Microsséries , Nestina/metabolismo , Células-Tronco Neurais/virologia
14.
Autophagy ; 8(6): 938-53, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22751470

RESUMO

Coxsackievirus B3 (CVB3) has previously been shown to utilize autophagy in an advantageous manner during the course of infection of the host cell. However, few studies have determined whether stem cells induce autophagy in a similar fashion, and whether virus-induced autophagy occurs following infection of stem cells. Therefore, we compared the induction of autophagy following CVB3 infection of neural progenitor and stem cells (NPSCs), which we have recently shown to be highly susceptible to CVB3 infection, to HL-1 cells, a transformed cardiomyocyte cell line. As previously demonstrated for other susceptible host cells, HL-1 cells showed an increase in the activity of autophagic signaling following infection with a CVB3 expressing dsRed protein (dsRed-CVB3). Furthermore, viral titers in HL-1 cells increased in the presence of an inducer of autophagy (CCPA), while viral titers decreased in the presence of an inhibitor of autophagy (3-MA). In contrast, no change in autophagic signaling was seen in NPSCs following infection with dsRed-CVB3. Also, basal levels of autophagy in NPSCs were found to be highly elevated in comparison to HL-1 cells. Autophagy could be induced in NPSCs in the presence of rapamycin without altering levels of dsRed-CVB3 replication. In differentiated NPSC precursors, autophagy was activated during the differentiation process, and a decrease in autophagic signaling was observed within all three CNS lineages following dsRed-CVB3 infection. Hence, we conclude that the role of autophagy in modulating CVB3 replication appears cell type-specific, and stem cells may uniquely regulate autophagy in response to infection.


Assuntos
Autofagia , Infecções por Coxsackievirus/patologia , Células-Tronco Neurais/patologia , Células-Tronco Neurais/virologia , Adenina/análogos & derivados , Adenina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/fisiologia , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Transdução Genética , Carga Viral/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
15.
Am J Pathol ; 180(3): 1107-1120, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22214838

RESUMO

Coxsackieviruses are significant human pathogens causing myocarditis, meningitis, and encephalitis. We previously demonstrated the ability of coxsackievirus B3 (CVB3) to persist within the neonatal central nervous system (CNS) and to target neural stem cells. Given that CVB3 is a cytolytic virus and may therefore damage target cells, we characterized the potential reduction in neurogenesis within the developing brain and the subsequent developmental defects that occurred after the loss of these essential neural stem cells. Neonatal mice were inoculated with a recombinant CVB3 expressing eGFP (eGFP-CVB3), and alterations in neurogenesis and brain development were evaluated over time. We observed a reduction in proliferating cells in CNS neurogenic regions simultaneously with the presence of nestin(+) cells undergoing apoptosis. The size of the brain appeared smaller by histology, and a permanent decrease in brain wet weight was observed after eGFP-CVB3 infection. We also observed an inverse relationship between the amount of virus material and brain wet weight up to day 30 postinfection. In addition, signs of astrogliosis and a compaction of the cortical layers were observed at 90 days postinfection. Intriguingly, partial brain wet weight recovery was observed in mice treated with the antiviral drug ribavirin during the persistent stage of infection. Hence, long-term neurological sequelae might be expected after neonatal enteroviral infections, yet antiviral treatment initiated long after the end of acute infection might limit virus-mediated neuropathology.


Assuntos
Sistema Nervoso Central/virologia , Infecções por Coxsackievirus/complicações , Enterovirus Humano B , Células-Tronco Neurais/virologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Antivirais/farmacologia , Apoptose/fisiologia , Astrócitos/virologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/virologia , Divisão Celular , Proliferação de Células , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão , Proteínas Recombinantes , Carga Viral
16.
Nat Commun ; 2: 462, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21897373

RESUMO

Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α2ß1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS-BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS.


Assuntos
Barreira Hematoencefálica , Fímbrias Bacterianas , Integrina alfa2beta1/fisiologia , Streptococcus agalactiae/fisiologia , Animais , Aderência Bacteriana , Quimiocinas/imunologia , Quimiotaxia de Leucócito , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Interleucina-8/metabolismo , Meningites Bacterianas/imunologia , Meningites Bacterianas/microbiologia , Camundongos , Neutrófilos/imunologia , Transdução de Sinais , Streptococcus agalactiae/imunologia
17.
J Virol ; 85(12): 5718-32, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21471247

RESUMO

Enteroviruses, including coxsackieviruses, exhibit significant tropism for the central nervous system, and these viruses are commonly associated with viral meningitis and encephalitis. Previously, we described the ability of coxsackievirus B3 (CVB3) to infect proliferating neuronal progenitor cells located in the neonatal subventricular zone and persist in the adult murine central nervous system (CNS). Here, we demonstrate that cultured murine neurospheres, which comprise neural stem cells and their progeny at different stages of development, were highly susceptible to CVB3 infection. Neurospheres, or neural progenitor and stem cells (NPSCs), isolated from neonatal C57BL/6 mice, supported high levels of infectious virus production and high viral protein expression levels following infection with a recombinant CVB3 expressing enhanced green fluorescent protein (eGFP) protein. Similarly, NPSCs isolated from neonatal actin-promoter-GFP transgenic mice (actin-GFP NPSCs) were highly susceptible to infection with a recombinant CVB3 expressing DsRed (Discosoma sp. red fluorescent protein). Both nestin-positive and NG2(+) progenitor cells within neurospheres were shown to preferentially express high levels of viral protein as soon as 24 h postinfection (p.i.). By day 3 p.i., viral protein expression and viral titers increased dramatically in NPSCs with resultant cytopathic effects (CPE) and eventual cell death. In contrast, reduced viral replication, lower levels of CPE, and diminished viral protein expression levels were observed in NPSCs differentiated for 5 or 16 days in the presence of fetal bovine serum (FBS). Despite the presence of CPE and high levels of cell death following early CVB3 infection, surviving neurospheres were readily observed and continued to express detectable levels of viral protein as long as 37 days after initial infection. Also, CVB3 infection of actin-GFP NPSCs increased the percentage of cells expressing neuronal class III ß-tubulin following their differentiation in the presence of FBS. These results suggest that neural stem cells may be preferentially targeted by CVB3 and that neurogenic regions of the CNS may support persistent viral replication in the surviving host. In addition, normal progenitor cell differentiation may be altered in the host following infection.


Assuntos
Diferenciação Celular , Enterovirus Humano B/fisiologia , Enterovirus Humano B/patogenicidade , Células-Tronco Neurais/virologia , Animais , Células Cultivadas , Efeito Citopatogênico Viral , Enterovirus Humano B/genética , Enterovirus Humano B/ultraestrutura , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Células-Tronco Neurais/citologia , Células-Tronco Neurais/ultraestrutura , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral , Proteína Vermelha Fluorescente
18.
Virology ; 411(2): 288-305, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21251690

RESUMO

Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes.


Assuntos
Sistema Nervoso Central/virologia , Encefalomielite/patologia , Encefalomielite/virologia , Infecções por Enterovirus/patologia , Enterovirus/patogenicidade , Humanos
19.
J Neurosci ; 30(25): 8676-91, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20573913

RESUMO

Enterovirus infection in newborn infants is a significant cause of aseptic meningitis and encephalitis. Using a neonatal mouse model, we previously determined that coxsackievirus B3 (CVB3) preferentially targets proliferating neural stem cells located in the subventricular zone within 24 h after infection. At later time points, immature neuroblasts, and eventually mature neurons, were infected as determined by expression of high levels of viral protein. Here, we show that blood-derived Mac3(+) mononuclear cells were rapidly recruited to the CNS within 12 h after intracranial infection with CVB3. These cells displayed a myeloid-like morphology, were of a peripheral origin based on green fluorescent protein (GFP)-tagged adoptive cell transplant examination, and were highly susceptible to CVB3 infection during their migration into the CNS. Serial immunofluorescence images suggested that the myeloid cells enter the CNS via the choroid plexus, and that they may be infected during their extravasation and passage through the choroid plexus epithelium; these infected myeloid cells ultimately penetrate into the parenchyma of the brain. Before their migration through the ependymal cell layer, a subset of these infected myeloid cells expressed detectable levels of nestin, a marker for neural stem and progenitor cells. As these nestin(+) myeloid cells infected with CVB3 migrated through the ependymal cell layer, they revealed distinct morphological characteristics typical of type B neural stem cells. The recruitment of these novel myeloid cells may be specifically set in motion by the induction of a unique chemokine profile in the CNS induced very early after CVB3 infection, which includes upregulation of CCL12. We propose that intracranial CVB3 infection may lead to the recruitment of nestin(+) myeloid cells into the CNS which might represent an intrinsic host CNS repair response. In turn, the proliferative and metabolic status of recruited myeloid cells may render them attractive targets for CVB3 infection. Moreover, the migratory ability of these myeloid cells may point to a productive method of virus dissemination within the CNS.


Assuntos
Infecções por Coxsackievirus/virologia , Células Mieloides/virologia , Animais , Animais Recém-Nascidos , Plexo Corióideo/imunologia , Plexo Corióideo/virologia , Infecções por Coxsackievirus/imunologia , Imunofluorescência , Hibridização In Situ , Camundongos , Microscopia Confocal , Células Mieloides/imunologia , Neurônios/imunologia , Neurônios/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/imunologia , Células-Tronco/virologia
20.
PLoS Pathog ; 5(10): e1000618, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19834548

RESUMO

Many viruses encode proteins whose major function is to evade or disable the host T cell response. Nevertheless, most viruses are readily detected by host T cells, and induce relatively strong T cell responses. Herein, we employ transgenic CD4(+) and CD8(+) T cells as sensors to evaluate in vitro and in vivo antigen presentation by coxsackievirus B3 (CVB3), and we show that this virus almost completely inhibits antigen presentation via the MHC class I pathway, thereby evading CD8(+) T cell immunity. In contrast, the presentation of CVB3-encoded MHC class II epitopes is relatively unencumbered, and CVB3 induces in vivo CD4(+) T cell responses that are, by several criteria, phenotypically normal. The cells display an effector phenotype and mature into multi-functional CVB3-specific memory CD4(+) T cells that expand dramatically following challenge infection and rapidly differentiate into secondary effector cells capable of secreting multiple cytokines. Our findings have implications for the efficiency of antigen cross-presentation during coxsackievirus infection.


Assuntos
Apresentação de Antígeno/imunologia , Enterovirus Humano B/fisiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Infecções por Coxsackievirus/imunologia , Enterovirus Humano B/imunologia , Epitopos/imunologia , Células HeLa , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Memória Imunológica/efeitos dos fármacos , Memória Imunológica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...