Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(37): eadh2458, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703365

RESUMO

This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.

3.
Nat Commun ; 13(1): 7616, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539413

RESUMO

The emergence of forests on Earth (~385 million years ago, Ma)1 has been linked to an order-of-magnitude decline in atmospheric CO2 levels and global climatic cooling by altering continental weathering processes, but observational constraints on atmospheric CO2 before the rise of forests carry large, often unbound, uncertainties. Here, we calibrate a mechanistic model for gas exchange in modern lycophytes and constrain atmospheric CO2 levels 410-380 Ma from related fossilized plants with bound uncertainties of approximately ±100 ppm (1 sd). We find that the atmosphere contained ~525-715 ppm CO2 before continents were afforested, and that Earth was partially glaciated according to a palaeoclimate model. A process-driven biogeochemical model (COPSE) shows the appearance of trees with deep roots did not dramatically enhance atmospheric CO2 removal. Rather, shallow-rooted vascular ecosystems could have simultaneously caused abrupt atmospheric oxygenation and climatic cooling long before the rise of forests, although earlier CO2 levels are still unknown.


Assuntos
Dióxido de Carbono , Ecossistema , Florestas , Atmosfera , Árvores
4.
Proc Natl Acad Sci U S A ; 119(46): e2203818119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343239

RESUMO

Orbital cyclicity is a fundamental pacemaker of Earth's climate system. The Newark-Hartford Basin (NHB) lake sediment record of eastern North America contains compelling geologic expressions of this cyclicity, reflecting variations of climatic conditions in tropical Pangea during the Late Triassic and earliest Jurassic (~233 to 199 Ma). Climate modeling enables a deeper mechanistic understanding of Earth system modulation during this unique greenhouse and supercontinent period. We link major features of the NHB record to the combined climatic effects of orbital forcing, paleogeographic changes, and atmospheric pCO[Formula: see text] variations. An ensemble of transient, orbitally driven climate simulations is assessed for nine time slices, three atmospheric pCO[Formula: see text] values, and two paleogeographic reconstructions. Climatic transitions from tropical humid to more seasonal and ultimately semiarid are associated with tectonic drift of the NHB from [Formula: see text] to [Formula: see text]. The modeled orbital modulation of the precipitation-evaporation balance is most pronounced during the 220 to 200 Ma interval, whereas it is limited by weak seasonality and increasing aridity before and after this interval. Lower pCO[Formula: see text] at around 205 Ma contributes to drier climates and could have led to the observed damping of sediment cyclicity. Eccentricity-modulated precession dominates the orbitally driven climate response in the NHB region. High obliquity further amplifies summer precipitation through the seasonal shifts in the tropical rainfall belt. Regions with other proxy records are also assessed, providing guidance toward an integrated picture of global astronomical climate forcing in the Late Triassic and ultimately of other periods in Earth history.


Assuntos
Planeta Terra , Lagos , Estações do Ano
5.
Paleoceanogr Paleoclimatol ; 36(6): e2020PA004134, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34240008

RESUMO

The Mesozoic era (∼252 to 66 million years ago) was a key interval in Earth's evolution toward its modern state, witnessing the breakup of the supercontinent Pangaea and significant biotic innovations like the early evolution of mammals. Plate tectonic dynamics drove a fundamental climatic transition from the early Mesozoic supercontinent toward the Late Cretaceous fragmented continental configuration. Here, key aspects of Mesozoic long-term environmental changes are assessed in a climate model ensemble framework. We analyze so far the most extended ensemble of equilibrium climate states simulated for evolving Mesozoic boundary conditions covering the period from 255 to 60 Ma in 5 Myr timesteps. Global mean temperatures are generally found to be elevated above the present and exhibit a baseline warming trend driven by rising sea levels and increasing solar luminosity. Warm (Triassic and mid-Cretaceous) and cool (Jurassic and end-Cretaceous) anomalies result from pCO2 changes indicated by different reconstructions. Seasonal and zonal temperature contrasts as well as continental aridity show an overall decrease from the Late Triassic-Early Jurassic to the Late Cretaceous. Meridional temperature gradients are reduced at higher global temperatures and less land area in the high latitudes. With systematic sensitivity experiments, the influence of paleogeography, sea level, vegetation patterns, pCO2, solar luminosity, and orbital configuration on these trends is investigated. For example, long-term seasonality trends are driven by paleogeography, but orbital cycles could have had similar-scale effects on shorter timescales. Global mean temperatures, continental humidity, and meridional temperature gradients are, however, also strongly affected by pCO2.

6.
Proc Natl Acad Sci U S A ; 114(43): 11333-11337, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073052

RESUMO

The bulk of Earth's coal deposits used as fossil fuel today was formed from plant debris during the late Carboniferous and early Permian periods. The high burial rate of organic carbon correlates with a significant drawdown of atmospheric carbon dioxide (CO2) at that time. A recent analysis of a high-resolution record reveals large orbitally driven variations in atmospheric CO2 concentration between [Formula: see text]150 and 700 ppm for the latest Carboniferous and very low values of 100 [Formula: see text] 80 ppm for the earliest Permian. Here, I explore the sensitivity of the climate around the Carboniferous/Permian boundary to changes in Earth's orbital parameters and in atmospheric CO2 using a coupled climate model. The coldest orbital configurations are characterized by large axial tilt and small eccentricities of Earth's elliptical orbit, whereas the warmest configuration occurs at minimum tilt, maximum eccentricity, and a perihelion passage during Northern hemisphere spring. Global glaciation occurs at CO2 concentrations <40 ppm, suggesting a rather narrow escape from a fully glaciated Snowball Earth state given the low levels and large fluctuations of atmospheric CO2 These findings highlight the importance of orbital cycles for the climate and carbon cycle during the late Paleozoic ice age and the climatic significance of the fossil carbon stored in Earth's coal deposits.

7.
Glob Chall ; 1(1): 5-6, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31565249
9.
Ann Phys ; 523(11): 946-950, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22279242

RESUMO

An analysis of ground-based observations of solar irradiance was recently published in this journal, reporting an apparent increase of solar irradiance on the ground of the order of 1% between solar minima and maxima [1]. Since the corresponding variations in total solar irradiance on top of the atmosphere are accurately determined from satellite observations to be of the order of 0.1% only [2], the one order of magnitude stronger effect in the terrestrial insolation data was interpreted as evidence for cosmic-ray induced aerosol formation in the atmosphere. In my opinion, however, this result does not reflect reality. Using the energy budget of Earth's surface, I show that changes of ground-based insolation with the solar cycle of the order of 1% between solar minima and maxima would result in large surface air temperature variations which are inconsistent with the instrumental record. It would appear that the strong variations of terrestrial irradiance found by [1] are due to the uncorrected effects of volcanic or local aerosols and seasonal variations. Taking these effects into account, I find a variation of terrestrial insolation with solar activity which is of the same order as the one measured from space, bringing the surface energy budget into agreement with the solar signal detected in temperature data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...