Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167381, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37769738

RESUMO

Rapidly increasing temperatures in high-latitude regions are causing major changes in wetland ecosystems. To assess the impact of concomitant hydroclimatic fluctuations, mineral deposition, and autogenous succession on the rate and direction of changing arctic plant communities in Arctic Alaska, we conducted detailed palaeoecological analyses using plant macrofossil, pollen, testate amoebae, elemental analyses, and radiocarbon and lead (210Pb) dating on two replicate monoliths from a peatland that developed in a river valley on the northern foothills of the Books Range. We observed an expansion of Sphagnum populations and vascular plants preferring dry habitats, such as Sphagnum warnstorfii, Sphagnum teres/squarrosum, Polytrichum strictum, Aulacomnium palustre and Salix sp., in recent decades between 2000 and 2015 CE, triggered by an increase in temperature and deepening water tables. Deepening peatland water tables became accentuated over the last two decades, when it reached its lowest point in the last 700 years. Conversely, a higher water-table between ca. 1500 and 1950 CE led to a recession of Sphagnum communities and an expansion of sedges. The almost continuous supply of mineral matter during this time led to a dominance of minerotrophic plant communities, although with varying species composition throughout the study period. The replicate cores show similar patterns, but nuanced differences are also visible, depicting fine spatial scale differences particularly in peat-forming plant distribution and the different timings of their presence. In conclusion, our study provides valuable insights into the impact of hydroclimatic fluctuations on peatland vegetation in Arctic Alaska, highlighting their tendency to dry out in recent decades. It also highlights the importance of river valley peatlands in paleoenvironmental reconstructions.


Assuntos
Ecossistema , Sphagnopsida , Áreas Alagadas , Meio Ambiente , Solo , Plantas , Minerais
2.
Nat Commun ; 13(1): 4959, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002465

RESUMO

High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.


Assuntos
Amoeba , Pergelissolo , Mudança Climática , Hidrologia , Solo
3.
Ambio ; 50(11): 2038-2049, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33677811

RESUMO

Peatlands cover 3% of the land, occur in 169 countries, and have-by sequestering 600 Gt of carbon-cooled the global climate by 0.6 °C. After a general review about peatlands worldwide, this paper describes the importance of the Great Vasyugan Mire and presents suggestions about its protection and future research. The World's largest peatland, the Great Vasyugan Mire in West-Siberia, forms the border between the Taiga and the Forest-Steppe biomes and harbours rare species and mire types and globally unique self-organizing patterns. Current oil and gas exploitation may arguably be largely phased out by 2050, which will pave the way for a stronger focus on the mire's role in buffering climate change, maintaining ecosystem diversity, and providing other ecosystem services. Relevant new research lines will benefit from the extensive data sets that earlier studies have gathered for other purposes. Its globally unique character as the 'largest life form on land' qualifies the Great Vasyugan Mire in its entirety to be designated as a UNESCO World Heritage Site and a Ramsar Wetland of International Importance.


Assuntos
Ecossistema , Solo , Mudança Climática , Florestas , Áreas Alagadas
7.
Sci Data ; 7(1): 115, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286335

RESUMO

A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.

8.
Sci Rep ; 9(1): 6750, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043665

RESUMO

Grasslands are globally extensive, but the processes governing their ecology and evolution remain unclear. The role of fire for the expansion of ancestral C3 grasslands is particularly poorly understood. Here we present the first biomass combustion record based on late Miocene to Pleistocene (~10-1.9 Ma) charcoal morphologies (grass, herbs, wood) from the Black Sea, and test the extent of fire events and their role in the rise of open grassy habitats in eastern Eurasia. We show that a mixed regime of surface and crown fires under progressively colder and, at times, drier climates from the late Miocene to Pliocene (8.5-4.6 Ma) accelerated the forest to open woodland transition and sustained a more flammable ecosystem. A tipping point in the fire regime occurred at 4.3 Ma (mid-Pliocene), when increasingly cold and dry conditions led to the dominance of grasslands, and surface, litter fires of low intensity. We provide alternative mechanisms of C3 plant evolution by highlighting that fire has been a significant ecological agent for Eurasian grasslands. This study opens a new direction of research into grassland evolutionary histories that can be tested with fossil records of fire alongside climate and vegetation as well as with dynamic vegetation modells.


Assuntos
Ecossistema , Incêndios , Pradaria , Biomassa , Mar Negro , Carvão Vegetal/análise , Ecologia , Sedimentos Geológicos/análise , Plantas
9.
PLoS One ; 8(8): e71797, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990991

RESUMO

Faster-than-expected post-glacial migration rates of trees have puzzled ecologists for a long time. In Europe, post-glacial migration is assumed to have started from the three southern European peninsulas (southern refugia), where large areas remained free of permafrost and ice at the peak of the last glaciation. However, increasing palaeobotanical evidence for the presence of isolated tree populations in more northerly microrefugia has started to change this perception. Here we use the Northern Eurasian Plant Macrofossil Database and palaeoecological literature to show that post-glacial migration rates for trees may have been substantially lower (60-260 m yr(-1)) than those estimated by assuming migration from southern refugia only (115-550 m yr(-1)), and that early-successional trees migrated faster than mid- and late-successional trees. Post-glacial migration rates are in good agreement with those recently projected for the future with a population dynamical forest succession and dispersal model, mainly for early-successional trees and under optimal conditions. Although migration estimates presented here may be conservative because of our assumption of uniform dispersal, tree migration-rates clearly need reconsideration. We suggest that small outlier populations may be a key factor in understanding past migration rates and in predicting potential future range-shifts. The importance of outlier populations in the past may have an analogy in the future, as many tree species have been planted beyond their natural ranges, with a more beneficial microclimate than their regional surroundings. Therefore, climate-change-induced range-shifts in the future might well be influenced by such microrefugia.


Assuntos
Mudança Climática , Clima , Ecossistema , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Agricultura Florestal/métodos , Gelo , Camada de Gelo , Dinâmica Populacional , Árvores/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...