Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 101: 460-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26498506

RESUMO

Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes.


Assuntos
Córtex Cerebral/citologia , Corpo Estriado/citologia , Dopamina/metabolismo , Proteínas Quinases/deficiência , Receptor CB1 de Canabinoide/metabolismo , Sinapses/fisiologia , Animais , Benzoxazinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Cicloexanóis/farmacocinética , Dopaminérgicos/farmacologia , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Transgênicos , Morfolinas/farmacologia , Naftalenos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Quinases/genética , Sinapses/efeitos dos fármacos , Fatores de Tempo , Trítio/farmacocinética
2.
Cell Mol Life Sci ; 65(5): 840-50, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18213445

RESUMO

Anandamide is a lipid messenger that carries out a wide variety of biological functions. It has been suggested that anandamide accumulation involves binding to a saturable cellular component. To identify the structure(s) involved in this process, we analyzed the intracellular distribution of both biotinylated and radiolabeled anandamide, providing direct evidence that lipid droplets, also known as adiposomes, constitute a dynamic reservoir for the sequestration of anandamide. In addition, confocal microscopy and biochemical studies revealed that the anandamide-hydrolase is also spatially associated with lipid droplets, and that cells with a larger adiposome compartment have an enhanced catabolism of anandamide. Overall, these findings suggest that adiposomes may have a critical role in accumulating anandamide, possibly by connecting plasma membrane to internal organelles along the metabolic route of this endocannabinoid.


Assuntos
Adipócitos/metabolismo , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Queratinócitos/metabolismo , Metabolismo dos Lipídeos , Neuroblastoma/metabolismo , Organelas/química , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/metabolismo , Western Blotting , Células Cultivadas , Endocanabinoides , Humanos , Queratinócitos/citologia , Microdomínios da Membrana , Microscopia de Fluorescência , Neuroblastoma/patologia , Frações Subcelulares
3.
J Neurochem ; 104(4): 1091-100, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18028339

RESUMO

It has been recently reported that cannabidiol (CBD), a non-psychoactive cannabinoid, is able to kill glioma cells, both in vivo and in vitro, independently of cannabinoid receptor stimulation. However, the underlying biochemical mechanisms were not clarified. In the present study, we performed biochemical analysis of the effect of CBD both in vivo, by using glioma tumor tissues excised from nude mice, and in vitro, by using U87 glioma cells. In vivo exposure of tumor tissues to CBD significantly decreased the activity and content of 5-lipoxygenase (LOX, by approximately 40%), and of its end product leukotriene B4 ( approximately 25%). In contrast cyclooxygenase (COX)-2 activity and content, and the amount of its end product prostaglandin E2, were not affected by CBD. In addition, in vivo treatment with CBD markedly stimulated ( approximately 175%) the activity of fatty acid amide hydrolase (FAAH), the main anandamide-degrading enzyme, while decreasing anandamide content ( approximately 30%) and binding to CB1 cannabinoid receptors ( approximately 25%). In vitro pre-treatment of U87 glioma cells with MK-886, a specific 5-LOX inhibitor, significantly enhanced the antimitotic effect of CBD, whereas the pre-treatment with indomethacin (pan-COX inhibitor) or celecoxib (COX-2 inhibitor), did not alter CBD effect. The study of the endocannabinoid system revealed that CBD was able to induce a concentration-dependent increase of FAAH activity in U87 cells. Moreover, a significantly reduced growth rate was observed in FAAH-over-expressing U87 cells, compared to wild-type controls. In conclusion, the present investigation indicates that CBD exerts its antitumoral effects through modulation of the LOX pathway and of the endocannabinoid system, suggesting a possible interaction of these routes in the control of tumor growth.


Assuntos
Amidoidrolases/fisiologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Araquidonato 5-Lipoxigenase/fisiologia , Canabidiol/metabolismo , Canabidiol/farmacologia , Animais , Canabinoides/metabolismo , Canabinoides/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Cell Mol Life Sci ; 64(2): 219-29, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17187172

RESUMO

The molecular basis for the control of energy balance by the endocannabinoid anandamide (AEA) is still unclear. Here, we show that murine 3T3-L1 fibroblasts have the machinery to bind, synthesize and degrade AEA, and that their differentiation into adipocytes increases by approximately twofold the binding efficiency of cannabinoid receptors (CBR), and by approximately twofold and approximately threefold, respectively, the catalytic efficiency of the AEA transporter and AEA hydrolase. In contrast, the activity of the AEA synthetase and the binding efficiency of vanilloid receptor were not affected by the differentiation process. In addition, we demonstrate that AEA increases by approximately twofold insulin-stimulated glucose uptake in differentiated adipocytes, according to a CB1R-dependent mechanism that involves nitric oxide synthase, but not lipoxygenase or cyclooxygenase. We also show that AEA binding to peroxisome proliferator-activated receptor-gamma, known to induce differentiation of 3T3-L1 fibroblasts into adipocytes, is not involved in the stimulation of glucose uptake.


Assuntos
Adipócitos/metabolismo , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Diferenciação Celular/fisiologia , Endocanabinoides , Metabolismo Energético/fisiologia , Glucose/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Células 3T3 , Adipócitos/fisiologia , Amidoidrolases/metabolismo , Animais , Western Blotting , Sistema Enzimático do Citocromo P-450/metabolismo , Ensaio de Imunoadsorção Enzimática , Camundongos , Oxigenases de Função Mista/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Canabinoides/metabolismo , Canais de Cátion TRPV/metabolismo
5.
Biochimie ; 88(12): 1889-97, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16949718

RESUMO

Endocannabinoids are a group of biologically active endogenous lipids that have recently emerged as important mediators in energy balance control. The two best studied endocannabinoids, anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) are the endogenous ligands of the central and peripheral cannabinoid receptors. Furthermore, AEA binds to the transient receptor potential vanilloid type-1 (TRPV1), a capsaicin-sensitive, non-selective cation channel. The synthesis of these endocannabinoids is catalyzed by the N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and the sn-1-selective diacylglycerol lipase (DAGL), whereas their degradation is accomplished by the fatty acid amide hydrolase (FAAH) and the monoglyceride lipase (MGL), respectively. We investigated the presence of a functional endocannabinoid system in human adipose tissue from seven healthy subjects. Subcutaneous abdominal adipose tissue underwent biochemical and molecular biology analyses, aimed at testing the expression of this system and its functional activity. AEA and 2-AG levels were detected and quantified by HPLC. Real time PCR analyzed the expression of the endocannabinoid system and immunofluorescence assays showed the distribution of its components in the adipose tissue. Furthermore, binding assay for the cannabinoid and vanilloid receptors and activity assay for each metabolic enzyme of the endocannabinoid system gave clear evidence of a fully operating system. The data presented herein show for the first time that the human adipose tissue is able to bind AEA and 2-AG and that it is endowed with the biochemical machinery to metabolize endocannabinoids.


Assuntos
Tecido Adiposo/metabolismo , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Glicerídeos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Adolescente , Adulto , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Feminino , Imunofluorescência , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , RNA/genética , RNA/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
6.
Mini Rev Med Chem ; 6(3): 257-68, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16515464

RESUMO

Endocannabinoids are amides, esters and ethers of long chain polyunsaturated fatty acids, which act as new lipidic mediators. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of (-)-Delta9-tetrahydrocannabinol (THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA and 2-AG at their receptors is limited by cellular uptake through an anandamide membrane transporter (AMT), followed by intracellular degradation. A fatty acid amide hydrolase (FAAH) is the main AEA hydrolase, whereas a monoacylglycerol lipase (MAGL) is critical in degrading 2-AG. Here, we will review growing evidence that demonstrates that these hydrolases are pivotal regulators of the endogenous levels of AEA and 2-AG in vivo, overall suggesting that specific inhibitors of AMT, FAAH or MAGL may serve as attractive therapeutic targets for the treatment of human disorders. Recently, the N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), which synthesizes AEA from N-arachidonoylphosphatidylethanolamine (NArPE), and the diacylglycerol lipase (DAGL), which generates 2-AG from diacylglycerol (DAG) substrates, have been characterized. The role of these synthetic routes in maintaining the endocannabinoid tone in vivo will be discussed. Finally, the effects of inhibitors of endocannabinoid degradation in animal models of human disease will be reviewed, with an emphasis on their ongoing applications in anxiety, cancer and neurodegenerative disorders.


Assuntos
Agonistas de Receptores de Canabinoides , Moduladores de Receptores de Canabinoides/metabolismo , Moduladores de Receptores de Canabinoides/uso terapêutico , Endocanabinoides , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/química , Cannabis/química , Membrana Celular/metabolismo , Química Farmacêutica/métodos , Química Farmacêutica/tendências , Dronabinol/metabolismo , Glicerídeos/metabolismo , Humanos , Lipase Lipoproteica/metabolismo , Monoacilglicerol Lipases/metabolismo , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/metabolismo , Alcamidas Poli-Insaturadas
7.
J Pharmacol Exp Ther ; 309(2): 745-57, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14757851

RESUMO

We investigated whether prostaglandin ethanolamides (prostamides) E(2), F(2alpha), and D(2) exert some of their effects by 1) activating prostanoid receptors either per se or after conversion into the corresponding prostaglandins; 2) interacting with proteins for the inactivation of the endocannabinoid N-arachidonoylethanolamide (AEA), for example fatty acid amide hydrolase (FAAH), thereby enhancing AEA endogenous levels; or 3) activating the vanilloid receptor type-1 (TRPV1). Prostamides potently stimulated cat iris contraction with potency approaching that of the corresponding prostaglandins. However, prostamides D(2), E(2), and F(2alpha) exhibited no meaningful interaction with the cat recombinant FP receptor, nor with human recombinant DP, EP(1-4), FP, IP, and TP prostanoid receptors. Prostamide F(2alpha) was also very weak or inactive in a panel of bioassays specific for the various prostanoid receptors. None of the prostamides inhibited AEA enzymatic hydrolysis by FAAH in cell homogenates, or AEA cellular uptake in intact cells. Furthermore, less than 3% of the compounds were hydrolyzed to the corresponding prostaglandins when incubated for 4 h with homogenates of rat brain, lung, or liver, and cat iris or ciliary body. Very little temperature-dependent uptake of prostamides was observed after incubation with rat brain synaptosomes or RBL-2H3 cells. We suggest that prostamides' most prominent pharmacological actions are not due to transformation into prostaglandins, activation of prostanoid receptors, enhancement of AEA levels, or gating of TRPV1 receptors, but possibly to interaction with novel receptors that seem to be functional in the cat iris.


Assuntos
Amidas/farmacologia , Amidoidrolases/metabolismo , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Prostaglandinas/farmacologia , Amidas/metabolismo , Amidoidrolases/efeitos dos fármacos , Animais , Gatos , Linhagem Celular , Endocanabinoides , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Cobaias , Humanos , Hidrólise , Iris/efeitos dos fármacos , Iris/fisiologia , Veias Jugulares/efeitos dos fármacos , Veias Jugulares/fisiologia , Camundongos , Alcamidas Poli-Insaturadas , Prostaglandinas/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Receptores de Droga/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Proteínas Recombinantes/metabolismo , Sinaptossomos/metabolismo , Canais de Cátion TRPV , Células Tumorais Cultivadas
8.
Mol Hum Reprod ; 10(4): 215-21, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14985476

RESUMO

Anandamide (N-arachidonoylethanolamine, AEA) is a major endocannabinoid, known to impair mouse pregnancy and embryo development and to induce apoptosis in blastocysts. Here we show that mouse blastocysts rapidly (within 30 min of culture) release a soluble compound, that increases by approximately 2.5-fold the activity of AEA hydrolase (fatty acid amide hydrolase, FAAH) present in the mouse uterus, without affecting FAAH gene expression at the translational level. This "FAAH activator" was produced by both trophoblast and inner cell mass cells, and its initial biochemical characterization showed that it was fully neutralized by adding lipase to the blastocyst-conditioned medium (BCM), and was potentiated by adding trypsin to BCM. Other proteases, phospholipases A(2), C or D, DNAse I or RNAse A were ineffective. BCM did not affect the AEA-synthesizing phospholipase D, the AEA-binding cannabinoid receptors, or the selective AEA membrane transporter in mouse uterus. The FAAH activator was absent in uterine fluid from pregnant mice and could not be identified with any factor known to be released by blastocysts. In fact, platelet-activating factor inhibited non-competitively FAAH in mouse uterus extracts, but not in intact uterine horns, whereas leukotriene B(4) or prostaglandins E(2) and F(2)alpha had no effect. Overall, it can be suggested that blastocysts may protect themselves against the noxious effects of uterine endocannabinoids by locally releasing a lipid able to cross the cell membranes and to activate FAAH. The precise molecular identity of this activator, the first ever reported for FAAH, remains to be elucidated.


Assuntos
Blastocisto/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Metabolismo dos Lipídeos , Oxigenases de Função Mista/metabolismo , Útero/metabolismo , Amidoidrolases , Animais , Meios de Cultivo Condicionados , Sistema Enzimático do Citocromo P-450/genética , Ativação Enzimática , Feminino , Camundongos , Camundongos Knockout , Oxigenases de Função Mista/genética , Fosfolipase D/metabolismo , Gravidez , Receptores de Canabinoides/metabolismo
9.
J Neurosci ; 23(10): 4127-33, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12764100

RESUMO

Type 1 vanilloid receptors (VR1) have been identified recently in the brain, in which they serve as yet primarily undetermined purposes. The endocannabinoid anandamide (AEA) and some of its oxidative metabolites are ligands for VR1, and AEA has been shown to afford protection against ouabain-induced in vivo excitotoxicity, in a manner that is only in part dependent on the type 1 cannabinoid (CB1) receptor. In the present study, we assessed whether VR1 is involved in neuroprotection by AEA and by arvanil, a hydrolysis-stable AEA analog that is a ligand for both VR1 and CB1. Furthermore, we assessed the putative involvement of lipoxygenase metabolites of AEA in conveying neuroprotection. Using HPLC and gas chromatography/mass spectroscopy, we demonstrated that rat brain and blood cells converted AEA into 12-hydroxy-N-arachidoylethanolamine (12-HAEA) and 15-hydroxy-N-arachidonoylethanolamine (15-HAEA) and that this conversion was blocked by addition of the lipoxygenase inhibitor nordihydroguaiaretic acid. Using magnetic resonance imaging we show the following: (1) pretreatment with the reduced 12-lipoxygenase metabolite of AEA, 12-HAEA, attenuated cytotoxic edema formation in a CB1 receptor-independent manner in the acute phase after intracranial injection of the Na+/K+-ATPase inhibitor ouabain; (2) the reduced 15-lipoxygenase metabolite, 15-HAEA, enhanced the neuroprotective effect of AEA in the acute phase; (3) modulation of VR1, as tested using arvanil, the VR1 agonist capsaicin, and the antagonist capsazepine, leads to neuroprotective effects in this model, and arvanil is a potent neuroprotectant, acting at both CB1 and VR1; and (4) the in vivo neuroprotective effects of AEA are mediated by CB1 but not by lipoxygenase metabolites or VR1.


Assuntos
Ácidos Araquidônicos/fisiologia , Canabinoides/farmacologia , Capsaicina/análogos & derivados , Capsaicina/metabolismo , Ácidos Graxos Insaturados/fisiologia , Lipoxigenase/fisiologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Receptores de Droga/fisiologia , Animais , Animais Recém-Nascidos , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/enzimologia , Células Sanguíneas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Química Encefálica , Mapeamento Encefálico , Moduladores de Receptores de Canabinoides , Endocanabinoides , Etanolaminas/análise , Etanolaminas/metabolismo , Lipoxigenase/metabolismo , Masculino , Masoprocol/farmacologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/enzimologia , Ouabaína/farmacologia , Alcamidas Poli-Insaturadas , Ratos , Ratos Wistar , Receptores de Droga/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-12052051

RESUMO

Anandamide (N -arachidonoyl-ethanolamine, AEA) was the first endogenous ligand of cannabinoid receptors to be discovered. Yet, since early studies, AEA appeared to exhibit also some effects that were not mediated by cannabinoid CB(1) or CB(2) receptors. Indeed, AEA exerts some behavioral actions also in mice with genetically disrupted CB(1) receptors, whereas in vitro it is usually a partial agonist at these receptors and a weak activator of CB(2) receptors. Nevertheless, several pharmacological effects of AEA are mediated by CB(1) receptors, which, by being coupled to G-proteins, can be seen as AEA "metabotropic" receptors. Furthermore, at least two different, and as yet uncharacterized, G-protein-coupled AEA receptors have been suggested to exist in the brain and vascular endothelium, respectively. AEA is also capable of directly inhibiting ion currents mediated by L-type Ca(2+) channels and TASK-1 K(+) channels. However, to date the only reasonably well characterized, non-cannabinoid site of action for AEA is the vanilloid receptor type 1 (VR1), a non-selective cation channel gated also by capsaicin, protons and heat. VR1 might be considered as an AEA "ionotropic" receptor and, under certain conditions, mediates effects ranging from vasodilation, broncho-constriction, smooth muscle tone modulation and nociception to stimulation of hippocampal pair-pulse depression, inhibition of tumor cell growth and induction of apoptosis.


Assuntos
Ácidos Araquidônicos/metabolismo , Receptores de Droga/metabolismo , Animais , Ácidos Araquidônicos/química , Encéfalo/metabolismo , Canais de Cálcio Tipo L/metabolismo , Endocanabinoides , Endotélio Vascular/metabolismo , Alcamidas Poli-Insaturadas , Canais de Potássio/metabolismo , Receptores de Canabinoides , Receptores de N-Metil-D-Aspartato/metabolismo
11.
J Neurosci ; 21(22): 8765-71, 2001 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11698588

RESUMO

The endocannabinoid anandamide [N-arachidonoylethanolamine (AEA)] is thought to function as an endogenous protective factor of the brain against acute neuronal damage. However, this has never been tested in an in vivo model of acute brain injury. Here, we show in a longitudinal pharmacological magnetic resonance imaging study that exogenously administered AEA dose-dependently reduced neuronal damage in neonatal rats injected intracerebrally with the Na(+)/K(+)-ATPase inhibitor ouabain. At 15 min after injury, AEA (10 mg/kg) administered 30 min before ouabain injection reduced the volume of cytotoxic edema by 43 +/- 15% in a manner insensitive to the cannabinoid CB(1) receptor antagonist SR141716A. At 7 d after ouabain treatment, 64 +/- 24% less neuronal damage was observed in AEA-treated (10 mg/kg) rats compared with control animals. Coadministration of SR141716A prevented the neuroprotective actions of AEA at this end point. In addition, (1) no increase in AEA and 2-arachidonoylglycerol levels was detected at 2, 8, or 24 hr after ouabain injection; (2) application of SR141716A alone did not increase the lesion volume at days 0 and 7; and (3) the AEA-uptake inhibitor, VDM11, did not affect the lesion volume. These data indicate that there was no endogenous endocannabinoid tone controlling the acute neuronal damage induced by ouabain. Although our data seem to question a possible role of the endogenous cannabinoid system in establishing a brain defense system in our model, AEA may be used as a structural template to develop neuroprotective agents.


Assuntos
Ácidos Araquidônicos/farmacologia , Lesões Encefálicas/prevenção & controle , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/induzido quimicamente , Edema Encefálico/patologia , Edema Encefálico/prevenção & controle , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Moduladores de Receptores de Canabinoides , Canabinoides/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endocanabinoides , Inibidores Enzimáticos , Glicerídeos/metabolismo , Estudos Longitudinais , Imageamento por Ressonância Magnética , Microinjeções , Neurônios/metabolismo , Neurônios/patologia , Ouabaína , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptores de Canabinoides , Receptores de Droga/antagonistas & inibidores , Rimonabanto
12.
Br J Pharmacol ; 134(5): 945-50, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11682441

RESUMO

1. We have studied the effect of palmitoylethanolamide (PEA, 2.5 - 30 mg kg(-1), i.p.) on upper gastrointestinal transit in control mice and in mice with chronic intestinal inflammation induced by croton oil. 2. PEA significantly and dose-dependently decreased intestinal transit. The inhibitory effect of PEA (10 mg kg(-1)) was not modified by the cannabinoid CB(1) receptor antagonist SR141716A (0.3 mg kg(-1), i.p.), the cannabinoid CB(2) receptor antagonist SR144528 (1 mg kg(-1), i.p.), N(G)-nitro-L-arginine methyl ester (L-NAME, 25 mg kg(-1), i.p.), yohimbine (1 mg kg(-1), i.p.), naloxone (2 mg kg(-1), i.p.) or hexamethonium (1 mg kg(-1), i.p.). 3. PEA levels were significantly decreased in the small intestine of croton oil-treated mice. In these animals, PEA also inhibited motility and this effect was not counteracted by SR141716A (0.3 mg kg(-1)), or SR144528 (1 mg kg(-1)). 4. Pre-treatment of mice with the amidase inhibitor phenylmethyl sulphonil fluoride (PMSF, 30 mg kg(-1), i.p.) did not modify the inhibitory effect of PEA, either in control or in mice with inflammation. 5. It is concluded that PEA inhibits intestinal motility with a peripheral mechanism independent from cannabinoid receptor activation. The decreased levels of PEA in croton oil-treated might contribute, at least in part, to the exaggerated transit observed during chronic intestinal inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Amidas , Animais , Canfanos/farmacologia , Óleo de Cróton/administração & dosagem , Relação Dose-Resposta a Droga , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Etanolaminas , Trânsito Gastrointestinal/efeitos dos fármacos , Hexametônio/farmacologia , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , NG-Nitroarginina Metil Éster/farmacologia , Naloxona/farmacologia , Antagonistas Nicotínicos/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Ácidos Palmíticos/metabolismo , Fluoreto de Fenilmetilsulfonil/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Canabinoides , Receptores de Droga/antagonistas & inibidores , Rimonabanto , Ioimbina/farmacologia
13.
Br J Pharmacol ; 134(3): 563-70, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11588110

RESUMO

1. We have studied the effect of cannabinoid agonists (CP 55,940 and cannabinol) on intestinal motility in a model of intestinal inflammation (induced by oral croton oil in mice) and measured cannabinoid receptor expression, endocannabinoids (anandamide and 2-arachidonylglycerol) and anandamide amidohydrolase activity both in physiological and pathophysiological states. 2. CP 55,940 (0.03 - 10 nmol mouse(-1)) and cannabinol (10 - 3000 nmol mouse(-1)) were more active in delaying intestinal motility in croton oil-treated mice than in control mice. These inhibitory effects were counteracted by the selective cannabinoid CB(1) receptor antagonist SR141716A (16 nmol mouse(-1)). SR141716A (1 - 300 nmol mouse(-1)), administered alone, increased intestinal motility to the same extent in both control and croton oil-treated mice. 3. Croton oil-induced intestinal inflammation was associated with an increased expression of CB(1) receptor, an unprecedented example of up-regulation of cannabinoid receptors during inflammation. 4. High levels of anandamide and 2-arachidonylglycerol were detected in the small intestine, although no differences were observed between control and croton oil-treated mice; by contrast anandamide amidohydrolase activity increased 2 fold in the inflamed small intestine. 5. It is concluded that inflammation of the gut increases the potency of cannabinoid agonists possibly by 'up-regulating' CB(1) receptor expression; in addition, endocannabinoids, whose turnover is increased in inflamed gut, might tonically inhibit intestinal motility.


Assuntos
Canabinoides/metabolismo , Modelos Animais de Doenças , Motilidade Gastrointestinal/fisiologia , Doenças Inflamatórias Intestinais/fisiopatologia , Receptores de Droga/fisiologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Moduladores de Receptores de Canabinoides , Canabinoides/agonistas , Canabinol/farmacologia , Canabinol/uso terapêutico , Óleo de Cróton , Cicloexanóis/farmacologia , Cicloexanóis/uso terapêutico , Fármacos Dermatológicos , Relação Dose-Resposta a Droga , Motilidade Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Injeções Intraperitoneais , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos ICR , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Canabinoides , Receptores de Droga/antagonistas & inibidores , Receptores de Droga/biossíntese , Rimonabanto
14.
Arch Biochem Biophys ; 393(2): 321-8, 2001 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-11556820

RESUMO

Lipopolysaccharide (LPS) increases the levels of the endogenous cannabinoid anandamide (N-arachidonoylethanolamine, AEA) in rat macrophages, but the mechanism responsible for this effect has not been elucidated. Here we demonstrate that LPS enhances the levels of AEA (fourfold over controls) also in human lymphocytes. We show that in these cells LPS inhibits the activity of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH), by downregulating the gene expression at transcriptional level. Lymphocytes have also a specific AEA transporter and a functional CB1 cannabinoid receptor, which were not modulated by LPS. The effect of this endotoxin on FAAH was not mediated by AEA-induced activation of cannabinoid receptors. Conversely, the stimulatory action of LPS on AEA levels might be due to inhibition of FAAH, as suggested by the observation that an increase of AEA amounts was also induced by an irreversible FAAH inhibitor. These results suggest that lymphocytes take part in regulating the peripheral endocannabinoid system and endocannabinoid homeostasis.


Assuntos
Amidoidrolases/metabolismo , Ácidos Araquidônicos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Linfócitos/efeitos dos fármacos , Sítios de Ligação , Transporte Biológico , Moduladores de Receptores de Canabinoides , Cicloexanóis/metabolismo , Regulação para Baixo/efeitos dos fármacos , Endocanabinoides , Humanos , Técnicas In Vitro , Linfócitos/enzimologia , Linfócitos/metabolismo , Alcamidas Poli-Insaturadas , Trítio
15.
Neuroreport ; 12(10): 2125-9, 2001 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-11447320

RESUMO

Recent studies have demonstrated a loss of cannabinoid CB1 receptors in the basal ganglia in Huntington's disease (HD), but there are no data on endocannabinoid levels in this disease. In the present study, we have addressed this question by using rats with bilateral intrastriatal injections of 3-nitropropionic acid (3-NP), a toxin that, through the selective damage of striatal GABAergic efferent neurons, produces a useful model of HD. Twelve days after the lesion, 3-NP-lesioned rats exhibited motor disturbances, characterized by an ambulatory hyperactivity accompanied by a loss of guided activities. Analysis of GABA contents in the basal ganglia showed a trend towards a reduction compatible with motor hyperactivity. In addition, CB1 receptor binding and, to a greater extent, CB1 receptor activation of GTP-binding proteins, were also reduced in the basal ganglia. These changes were paralleled by a decrease of the contents of the two endocannabinoids, anandamide and 2-arachidonoylglycerol, in the striatum, and by an increase, particularly of anandamide, in the ventral mesencephalon where the substantia nigra is located. Both CB1 receptors and endocannabinoid levels were not altered in the cerebral cortex, an area not affected by the lesion. In summary, behavioral and biochemical changes observed in rats intrastriatally lesioned with 3-NP were similar to those occurring in the brain of HD patients. As expected, a loss of CB1 receptor function was evident in the basal ganglia of these rats and this was accompanied by different changes in endocannabinoid levels.


Assuntos
Gânglios da Base/fisiopatologia , Canabinoides/metabolismo , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Transmissão Sináptica/fisiologia , Animais , Moduladores de Receptores de Canabinoides , Convulsivantes/administração & dosagem , Endocanabinoides , Doença de Huntington/induzido quimicamente , Doença de Huntington/fisiopatologia , Injeções Intraventriculares , Masculino , Atividade Motora/efeitos dos fármacos , Nitrocompostos , Propionatos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
J Clin Endocrinol Metab ; 86(6): 2687-96, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11397872

RESUMO

Little is known about the expression and function of cannabinoid receptor type 1 (CB1) in the human pituitary gland. The aim of this study was to investigate CB1 expression in human normal and tumoral pituitaries by in situ hybridization and immunohistochemistry using an antibody against CB1. CB1 was found in corticotrophs, mammotrophs, somatotrophs, and folliculostellate cells in the anterior lobe of normal pituitary. After examination of 42 pituitary adenomas, CB1 was detected in acromegaly-associated pituitary adenomas, Cushing's adenomas, and prolactinomas, whereas faint or no expression was found in nonfunctioning pituitary adenomas. Experiments with cultured pituitary adenoma cells showed that the CB1 agonist WIN 55,212--2 inhibited GH secretion in most of acromegaly-associated pituitary adenomas tested and that the CB1 antagonist SR 141716A was generally able to reverse this effect. Moreover, WIN 55,212--2 was able to suppress GHRH-stimulated GH release, and this effect was not blocked by coincubation with SR 141716A, possibly indicating a non-CB1-mediated effect. In contrast, WIN 55,212--2 was ineffective on GH-releasing peptide-stimulated GH release. In four Cushing's adenomas tested, WIN 55,212--2 was not able to modify basal ACTH secretion. However, simultaneous application of CRF and WIN 55,212--2 resulted in a synergistic effect on ACTH secretion, and this effect could be abolished by SR 141716A, demonstrating a CB1-mediated effect. In the single case of prolactinomas tested, WIN 55,212--2 was able to inhibit basal secretion of PRL. Finally, the presence of endocannabinoids (anandamide and 2-arachidonoylglycerol) was investigated in normal and tumoral pituitaries. All tumoral samples had higher contents of anandamide and 2-arachidonoylglycerol compared with the normal hypophysis. Moreover, endocannabinoid content in the different pituitary adenomas correlated with the presence of CB1, being elevated in the tumoral samples positive for CB1 and lower in the samples in which no or low levels of CB1 were found. The results of this study point to a direct role of cannabinoids in the regulation of human pituitary hormone secretion.


Assuntos
Adenoma/metabolismo , Canabinoides/biossíntese , Hipófise/metabolismo , Neoplasias Hipofisárias/metabolismo , Receptores de Droga/metabolismo , Adenoma/patologia , Adolescente , Adulto , Idoso , Moduladores de Receptores de Canabinoides , Canabinoides/metabolismo , Canabinoides/farmacologia , Feminino , Hormônios/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/patologia , Receptores de Canabinoides , Valores de Referência , Células Tumorais Cultivadas
17.
Nature ; 410(6830): 822-5, 2001 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11298451

RESUMO

Leptin is the primary signal through which the hypothalamus senses nutritional state and modulates food intake and energy balance. Leptin reduces food intake by upregulating anorexigenic (appetite-reducing) neuropeptides, such as alpha-melanocyte-stimulating hormone, and downregulating orexigenic (appetite-stimulating) factors, primarily neuropeptide Y. Genetic defects in anorexigenic signalling, such as mutations in the melanocortin-4 (ref. 5) or leptin receptors, cause obesity. However, alternative orexigenic pathways maintain food intake in mice deficient in neuropeptide Y. CB1 cannabinoid receptors and the endocannabinoids anandamide and 2-arachidonoyl glycerol are present in the hypothalamus, and marijuana and anandamide stimulate food intake. Here we show that following temporary food restriction, CB1 receptor knockout mice eat less than their wild-type littermates, and the CB1 antagonist SR141716A reduces food intake in wild-type but not knockout mice. Furthermore, defective leptin signalling is associated with elevated hypothalamic, but not cerebellar, levels of endocannabinoids in obese db/db and ob/ob mice and Zucker rats. Acute leptin treatment of normal rats and ob/ob mice reduces anandamide and 2-arachidonoyl glycerol in the hypothalamus. These findings indicate that endocannabinoids in the hypothalamus may tonically activate CB1 receptors to maintain food intake and form part of the neural circuitry regulated by leptin.


Assuntos
Regulação do Apetite/fisiologia , Ácidos Araquidônicos , Canabinoides/farmacologia , Leptina/fisiologia , Receptores de Droga/fisiologia , Animais , Moduladores de Receptores de Canabinoides , Cerebelo/metabolismo , Ingestão de Alimentos , Endocanabinoides , Feminino , Alimentos , Glicerídeos/biossíntese , Hipotálamo/metabolismo , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Fosfolipase D/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptores de Canabinoides , Receptores de Droga/antagonistas & inibidores , Receptores para Leptina , Rimonabanto , Transdução de Sinais
18.
FASEB J ; 15(2): 300-2, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11156943

RESUMO

Spasticity is a complicating sign in multiple sclerosis that also develops in a model of chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice. In areas associated with nerve damage, increased levels of the endocannabinoids, anandamide (arachidonoylethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG), and of the AEA congener, palmitoylethanolamide (PEA), were detected here, whereas comparable levels of these compounds were found in normal and non-spastic CREAE mice. While exogenously administered endocannabinoids and PEA ameliorate spasticity, selective inhibitors of endocannabinoid re-uptake and hydrolysis-probably through the enhancement of endogenous levels of AEA, and, possibly, 2-arachidonoyl glycerol-significantly ameliorated spasticity to an extent comparable with that observed previously with potent cannabinoid receptor agonists. These studies provide definitive evidence for the tonic control of spasticity by the endocannabinoid system and open new horizons to therapy of multiple sclerosis, and other neuromuscular diseases, based on agents modulating endocannabinoid levels and action, which exhibit little psychotropic activity.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Encéfalo/metabolismo , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Encefalomielite Autoimune Experimental/fisiopatologia , Esclerose Múltipla/fisiopatologia , Piperidinas/uso terapêutico , Pirazóis/uso terapêutico , Espasmo/prevenção & controle , Medula Espinal/metabolismo , Amidas , Animais , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Endocanabinoides , Etanolaminas , Glicerídeos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos , Ácidos Palmíticos/metabolismo , Alcamidas Poli-Insaturadas , Receptores de Canabinoides , Receptores de Droga/antagonistas & inibidores , Receptores de Droga/fisiologia , Rimonabanto , Espasmo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA