Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 178: 65-72, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28319743

RESUMO

Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure.


Assuntos
Silicatos de Alumínio/química , Biodegradação Ambiental , Petróleo , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Ácidos/química , Bactérias/metabolismo , Bentonita , Argila , Caulim , Compostos de Magnésio , Compostos de Silício , Propriedades de Superfície
2.
Chemosphere ; 174: 28-38, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28157606

RESUMO

Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact.


Assuntos
Silicatos de Alumínio/metabolismo , Bactérias/metabolismo , Recuperação e Remediação Ambiental/métodos , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Silicatos de Alumínio/química , Biodegradação Ambiental , Argila , Interações Microbianas , Minerais/química , Minerais/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
3.
J Environ Manage ; 144: 197-202, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24956464

RESUMO

The role of organoclays in hydrocarbon removal during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The clays used for this study were Na-montmorillonite and saponite. These two clays were treated with didecyldimethylammonium bromide to produce organoclays which were used in this study. The study indicated that clays with high cation exchange capacity (CEC) such as Na-montmorillonite produced an organomontmorillonite that was inhibitory to biodegradation of the crude oil hydrocarbons. Extensive hydrophobic interaction between the organic phase of the organoclay and the crude oil hydrocarbons is suggested to render the hydrocarbons unavailable for biodegradation. However, untreated Na-montmorillonite was stimulatory to biodegradation of the hydrocarbons and is believed to have done so because of its high surface area for the accumulation of microbes and nutrients making it easy for the microbes to access the nutrients. This study indicates that unlike unmodified montmorillonites, organomontmorillonite may not serve any useful purpose in the bioremediation of crude oil spill sites where hydrocarbon removal by biodegradation is desired within a rapid time period.


Assuntos
Silicatos de Alumínio/química , Bactérias/metabolismo , Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos/metabolismo , Minerais/química , Petróleo/metabolismo , Biodegradação Ambiental , Argila
4.
J Environ Manage ; 142: 30-5, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24813351

RESUMO

Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil.


Assuntos
Bentonita/química , Metais/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Adsorção , Biodegradação Ambiental , Cátions/química , Petróleo , Hidrocarbonetos Policíclicos Aromáticos/química , Microbiologia do Solo , Poluentes do Solo/química
5.
Biodegradation ; 25(1): 153-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23670057

RESUMO

The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.


Assuntos
Silicatos de Alumínio/química , Petróleo/metabolismo , Bentonita/química , Biodegradação Ambiental , Cromatografia Gasosa , Argila , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Caulim/química , Compostos de Magnésio/química , Compostos de Amônio Quaternário/química , Compostos de Silício/química , Propriedades de Superfície
6.
Environ Sci Pollut Res Int ; 20(9): 6445-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23589240

RESUMO

The compositional changes of saturates, aromatics, resins and asphaltenes (SARA) fractions in aqueous clay/oil microcosm experiments with a hydrocarbon-degrading microorganism community were analysed using Iatroscan. The clay mineral samples used in this study were organomontmorillonite, acid-activated montmorillonite and K, Ca, Zn and Cr montmorillonites produced by modifying the original montmorillonite sample. The evaluation and quantification of biodegradation and adsorption were carried out using a combination of the Iatroscan and gravimetric analysis. The SARA compositions in the presence of organomontmorillonite and acid-activated montmorillonite after incubation follow the same pattern in which the aromatic fraction is higher than the other fractions unlike in the presence of unmodified, K, Ca and Zn montmorillonites, where the saturates fraction is higher than the other fractions. Changes in SARA fractions due to biodegradation seemed to occur most in the presence of unmodified and calcium montmorillonites; hence, the removal of SARA fractions due to biodegradation was significant and enhanced in the presence of these two clay samples. However, biodegradation in the presence of organomontmorillonite and acid-activated and Cr montmorillonites was hindered. The study indicated that Cr montmorillonite adsorbed resins most, whereas Zn and K montmorillonites adsorbed aromatics most after incubation.


Assuntos
Silicatos de Alumínio/química , Biodegradação Ambiental , Petróleo/análise , Adsorção , Argila , Concentração de Íons de Hidrogênio
7.
Nature ; 431(7009): 663-5, 2004 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-15470421

RESUMO

Recent reports of approximately 30 wt% of sulphate within saline sediments on Mars--probably occurring in hydrated form--suggest a role for sulphates in accounting for equatorial H2O observed in a global survey by the Odyssey spacecraft. Among salt hydrates likely to be present, those of the MgSO4*nH2O series have many hydration states. Here we report the exposure of several of these phases to varied temperature, pressure and humidity to constrain their possible H2O contents under martian surface conditions. We found that crystalline structure and H2O content are dependent on temperature-pressure history, that an amorphous hydrated phase with slow dehydration kinetics forms at <1% relative humidity, and that equilibrium calculations may not reflect the true H2O-bearing potential of martian soils. Mg sulphate salts can retain sufficient H2O to explain a portion of the Odyssey observations. Because phases in the MgSO4*nH2O system are sensitive to temperature and humidity, they can reveal much about the history of water on Mars. However, their ease of transformation implies that salt hydrates collected on Mars will not be returned to Earth unmodified, and that accurate in situ analysis is imperative.


Assuntos
Meio Ambiente Extraterreno/química , Sulfato de Magnésio/análise , Sulfato de Magnésio/química , Marte , Água/análise , Sedimentos Geológicos/química , Umidade , Cinética , Pressão , Solo/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...