Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(7): 1563-1569, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38913984

RESUMO

Site-specific noncanonical amino acid (ncAA) mutagenesis in living cells has traditionally relied on heterologous, nonsense-suppressing aminoacyl-tRNA synthetase (aaRS)/tRNA pairs that do not cross-react with their endogenous counterparts. Such heterologous pairs often perform suboptimally in a foreign host cell since they were not evolutionarily optimized to function in the foreign environment. This suboptimal performance restricts the number of ncAAs that can be simultaneously incorporated into a protein. Here, we show that the use of an endogenous aaRS/tRNA pair to drive ncAA incorporation can offer a potential solution to this limitation. To this end, we developed an engineered Escherichia coli strain (ATMY-C321), wherein the endogenous tyrosyl-tRNA synthetase (TyrRS)/tRNA pair has been functionally replaced with an archaeal counterpart, and the release factor 1 has been removed to eliminate competing termination at the UAG nonsense codons. The endogenous TyrRS/tRNACUATyr pair exhibits remarkably efficient nonsense suppression in the resulting cell, relative to established orthogonal ncAA-incorporation systems in E. coli, allowing the incorporation of an ncAA at up to 10 contiguous sites in a reporter protein. Our work highlights the limitations of orthogonal translation systems using heterologous aaRS/tRNA pairs and offers a potential alternative involving the use of endogenous pairs.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Escherichia coli , RNA de Transferência , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Tirosina-tRNA Ligase/metabolismo , Tirosina-tRNA Ligase/genética , Biossíntese de Proteínas , Códon sem Sentido
2.
Nat Chem ; 16(3): 389-397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38082177

RESUMO

Electrochemistry has recently emerged as a powerful approach in small-molecule synthesis owing to its numerous attractive features, including precise control over the fundamental reaction parameters, mild reaction conditions and innate scalability. Even though these advantages also make it an attractive strategy for chemoselective modification of complex biomolecules such as proteins, such applications remain poorly developed. Here we report an electrochemically promoted coupling reaction between 5-hydroxytryptophan (5HTP) and simple aromatic amines-electrochemical labelling of hydroxyindoles with chemoselectivity (eCLIC)-that enables site-specific labelling of full-length proteins under mild conditions. Using genetic code expansion technology, the 5HTP residue can be incorporated into predefined sites of a recombinant protein expressed in either prokaryotic or eukaryotic hosts for subsequent eCLIC labelling. We used the eCLIC reaction to site-specifically label various recombinant proteins, including a full-length human antibody. Furthermore, we show that eCLIC is compatible with strain-promoted alkyne-azide and alkene-tetrazine click reactions, enabling site-specific modification of proteins at two different sites with distinct labels.


Assuntos
Azidas , Química Click , Humanos , Proteínas Recombinantes/genética , Azidas/química
3.
Angew Chem Int Ed Engl ; 62(27): e202300961, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37219923

RESUMO

We have developed a novel visible-light-catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site-specifically installed 5-hydroxytryptophan residue (5HTP) on full-length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light-emitting diodes (455/650 nm) for rapid site-specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen-dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain-promoted azide-alkyne click reaction, enables site-specific dual-labeling of a target protein.


Assuntos
Azidas , Proteínas , Proteínas/química , Azidas/química , 5-Hidroxitriptofano/química , Alcinos/química , Catálise
4.
ACS Cent Sci ; 8(4): 483-492, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35559426

RESUMO

The Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNAEcTyr pair offers an attractive platform for genetically encoding new noncanonical amino acids (ncAA) in eukaryotes. However, challenges associated with a eukaryotic selection system, which is needed to engineer the platform, have impeded its success in the past. Recently, using a facile E. coli-based selection system, we showed that EcTyrRS could be engineered in a strain where the endogenous tyrosyl pair was substituted with an archaeal counterpart. However, significant cross-reactivity between the UAG-suppressing tRNACUA EcTyr and the bacterial glutaminyl-tRNA synthetase limited the scope of this strategy, preventing the selection of moderately active EcTyrRS mutants. Here we report an engineered tRNACUA EcTyr that overcomes this cross-reactivity. Optimized selection systems based on this tRNA enabled the efficient enrichment of both strongly and weakly active ncAA-selective EcTyrRS mutants. We also developed a wide dynamic range (WiDR) antibiotic selection to further enhance the activities of the weaker first-generation EcTyrRS mutants. We demonstrated the utility of our platform by developing several new EcTyrRS mutants that efficiently incorporated useful ncAAs in mammalian cells, including photoaffinity probes, bioconjugation handles, and a nonhydrolyzable mimic of phosphotyrosine.

5.
J Mol Biol ; 434(8): 167304, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-34655653

RESUMO

We report the development of a robust user-friendly Escherichia coli (E. coli) expression system, derived from the BL21(DE3) strain, for site-specifically incorporating unnatural amino acids (UAAs) into proteins using engineered E. coli tryptophanyl-tRNA synthetase (EcTrpRS)-tRNATrp pairs. This was made possible by functionally replacing the endogenous EcTrpRS-tRNATrp pair in BL21(DE3) E. coli with an orthogonal counterpart from Saccharomyces cerevisiae, and reintroducing it into the resulting altered translational machinery tryptophanyl (ATMW-BL21) E. coli strain as an orthogonal nonsense suppressor. The resulting expression system benefits from the favorable characteristics of BL21(DE3) as an expression host, and is compatible with the broadly used T7-driven recombinant expression system. Furthermore, the vector expressing the nonsense-suppressing engineered EcTrpRS-tRNATrp pair was systematically optimized to significantly enhance the incorporation efficiency of various tryptophan analogs. Together, the improved strain and the optimized suppressor plasmids enable efficient UAA incorporation (up to 65% of wild-type levels) into several different proteins. This robust and user-friendly platform will significantly expand the scope of the genetically encoded tryptophan-derived UAAs.


Assuntos
Escherichia coli , RNA de Transferência de Triptofano , RNA de Transferência , Triptofano-tRNA Ligase , Triptofano , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagênese , RNA de Transferência/genética , RNA de Transferência/metabolismo , Triptofano/genética , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
6.
Biochemistry ; 60(7): 489-493, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33560840

RESUMO

The ability to engineer the substrate specificity of natural aminoacyl-tRNA synthetase/tRNA pairs facilitates the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins. The Methanocaldococcus jannaschii-derived tyrosyl-tRNA synthetase (MjTyrRS)/tRNA pair has been engineered to incorporate numerous ncAAs into protein expressed in bacteria. However, it cannot be used in eukaryotic cells due to cross-reactivity with its host counterparts. The Escherichia coli-derived tyrosyl-tRNA synthetase (EcTyrRS)/tRNA pair offers a suitable alternative to this end, but a much smaller subset of ncAAs have been genetically encoded using this pair. Here we report that this discrepancy, at least partly, stems from the structural robustness of EcTyrRS being lower than that of MjTyrRS. We show that the thermostability of engineered TyrRS mutants is generally significantly lower than those of their wild-type counterparts. Derived from a thermophilic archaeon, MjTyrRS is a remarkably sturdy protein and tolerates extensive active site engineering without a catastrophic loss of stability at physiological temperature. In contrast, EcTyrRS exhibits significantly lower thermostability, rendering some of its engineered mutants insufficiently stable at physiological temperature. Our observations identify the structural robustness of an aaRS as an important factor that significantly influences how extensively it can be engineered. To overcome this limitation, we have further developed chimeras between EcTyrRS and its homologue from a thermophilic bacterium, which offer an optimal balance between thermostability and activity. We show that the chimeric bacterial TyrRSs show enhanced tolerance for destabilizing active site mutations, providing a potentially more engineerable platform for genetic code expansion.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Engenharia de Proteínas/métodos , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Domínio Catalítico/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Código Genético/genética , RNA de Transferência/metabolismo , Especificidade por Substrato/genética , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA