Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 144(3): 547-562.e9, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37716646

RESUMO

Plectin, a highly versatile and multifunctional cytolinker, has been implicated in several multisystemic disorders. Most sequence variations in the human plectin gene (PLEC) cause epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), an autosomal recessive skin-blistering disorder associated with progressive muscle weakness. In this study, we performed a comprehensive cell biological analysis of dermal fibroblasts from three different patients with EBS-MD, where PLEC expression analyses revealed preserved mRNA levels in all cases, whereas full-length plectin protein content was significantly reduced or completely absent. Downstream effects of pathogenic PLEC sequence alterations included massive bundling of vimentin intermediate filament networks, including the occurrence of ring-like nuclei-encasing filament bundles, elongated mitochondrial networks, and abnormal nuclear morphologies. We found that essential fibroblast functions such as wound healing, migration, or orientation upon cyclic stretch were significantly impaired in the cells of patients with EBS-MD. Finally, EBS-MD fibroblasts displayed reduced adhesion capacities, which could be attributed to smaller focal adhesion contacts. Our study not only emphasizes plectin's functional role in human skin fibroblasts, it also provides further insights into the understanding of EBS-MD-associated disease mechanisms.


Assuntos
Epidermólise Bolhosa Simples , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Filamentos Intermediários/metabolismo , Plectina/genética , Epidermólise Bolhosa Simples/patologia , Distrofias Musculares/complicações , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mitocôndrias/metabolismo , Fibroblastos/metabolismo , Proteínas de Filamentos Intermediários/metabolismo
2.
Aging (Albany NY) ; 14(1): 195-224, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020601

RESUMO

Endothelial defects significantly contribute to cardiovascular pathology in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Using an endothelium-specific progeria mouse model, we identify a novel, endothelium-specific microRNA (miR) signature linked to the p53-senescence pathway and a senescence-associated secretory phenotype (SASP). Progerin-expressing endothelial cells exert profound cell-non-autonomous effects initiating senescence in non-endothelial cell populations and causing immune cell infiltrates around blood vessels. Comparative miR expression analyses revealed unique upregulation of senescence-associated miR34a-5p in endothelial cells with strong accumulation at atheroprone aortic arch regions but also, in whole cardiac- and lung tissues as well as in the circulation of progeria mice. Mechanistically, miR34a-5p knockdown reduced not only p53 levels but also late-stage senescence regulator p16 with no effect on p21 levels, while p53 knockdown reduced miR34a-5p and partially rescued p21-mediated cell cycle inhibition with a moderate effect on SASP. These data demonstrate that miR34a-5p reinforces two separate senescence regulating branches in progerin-expressing endothelial cells, the p53- and p16-associated pathways, which synergistically maintain a senescence phenotype that contributes to cardiovascular pathology. Thus, the key function of circulatory miR34a-5p in endothelial dysfunction-linked cardiovascular pathology offers novel routes for diagnosis, prognosis and treatment for cardiovascular aging in HGPS and potentially geriatric patients.


Assuntos
Endotélio Vascular/metabolismo , Regulação da Expressão Gênica/fisiologia , Lamina Tipo A/metabolismo , MicroRNAs/metabolismo , Progéria/metabolismo , Regulação para Cima/fisiologia , Envelhecimento , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aterosclerose/metabolismo , Senescência Celular , Regulação para Baixo , Lamina Tipo A/genética , Camundongos , MicroRNAs/genética , Comunicação Parácrina/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Elife ; 102021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33605210

RESUMO

Lamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). Using antibody labeling, we previously observed a depletion of nucleoplasmic A-type lamins in mouse cells lacking LAP2α. Here, we show that loss of LAP2α actually causes formation of larger, biochemically stable lamin A/C structures in the nuclear interior that are inaccessible to lamin A/C antibodies. While nucleoplasmic lamin A forms from newly expressed pre-lamin A during processing and from soluble mitotic lamins in a LAP2α-independent manner, binding of LAP2α to lamin A/C during interphase inhibits formation of higher order structures, keeping nucleoplasmic lamin A/C in a mobile state independent of lamin A/C S22 phosphorylation. We propose that LAP2α is essential to maintain a mobile lamin A/C pool in the nuclear interior, which is required for proper nuclear functions.


Assuntos
Proteínas de Ligação a DNA/genética , Lamina Tipo A/genética , Proteínas de Membrana/genética , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Camundongos
4.
J Clin Invest ; 129(2): 531-545, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30422822

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder characterized by accelerated cardiovascular disease with extensive fibrosis. It is caused by a mutation in LMNA leading to expression of truncated prelamin A (progerin) in the nucleus. To investigate the contribution of the endothelium to cardiovascular HGPS pathology, we generated an endothelium-specific HGPS mouse model with selective endothelial progerin expression. Transgenic mice develop interstitial myocardial and perivascular fibrosis and left ventricular hypertrophy associated with diastolic dysfunction and premature death. Endothelial cells show impaired shear stress response and reduced levels of endothelial nitric oxide synthase (eNOS) and NO. On the molecular level, progerin impairs nucleocytoskeletal coupling in endothelial cells through changes in mechanoresponsive components at the nuclear envelope, increased F-actin/G-actin ratios, and deregulation of mechanoresponsive myocardin-related transcription factor-A (MRTFA). MRTFA binds to the Nos3 promoter and reduces eNOS expression, thereby mediating a profibrotic paracrine response in fibroblasts. MRTFA inhibition rescues eNOS levels and ameliorates the profibrotic effect of endothelial cells in vitro. Although this murine model lacks the key anatomical feature of vascular smooth muscle cell loss seen in HGPS patients, our data show that progerin-induced impairment of mechanosignaling in endothelial cells contributes to excessive fibrosis and cardiovascular disease in HGPS patients.


Assuntos
Células Endoteliais/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Lamina Tipo A/biossíntese , Mecanotransdução Celular , Miocárdio/metabolismo , Elementos de Resposta , Transativadores/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Fibrose , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Lamina Tipo A/genética , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Óxido Nítrico/biossíntese , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico Sintase Tipo III/genética , Transativadores/genética
5.
J Cell Sci ; 131(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29361532

RESUMO

A-type lamins are components of the peripheral nuclear lamina but also localize in the nuclear interior in a complex with lamina-associated polypeptide (LAP) 2α. Loss of LAP2α and nucleoplasmic lamins in wild-type cells increases cell proliferation, but in cells expressing progerin (a mutant lamin A that causes Hutchinson-Gilford progeria syndrome), low LAP2α levels result in proliferation defects. Here, the aim was to understand the molecular mechanism governing how relative levels of LAP2α, progerin and nucleoplasmic lamins affect cell proliferation. Cells from progeria patients and inducible progerin-expressing cells expressing low levels of progerin proliferate faster than wild-type or lamin A-expressing control cells, and ectopic expression of LAP2α impairs proliferation. In contrast, cells expressing high levels of progerin and lacking lamins in the nuclear interior proliferate more slowly, and ectopic LAP2α expression enhances proliferation. However, simultaneous expression of LAP2α and wild-type lamin A or an assembly-deficient lamin A mutant restored the nucleoplasmic lamin A pool in these cells and abolished the growth-promoting effect of LAP2α. Our data show that LAP2α promotes or inhibits proliferation of progeria cells depending on the level of A-type lamins in the nuclear interior.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Laminas/metabolismo , Proteínas de Membrana/metabolismo , Progéria/metabolismo , Progéria/patologia , Ciclo Celular , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lamina Tipo A/metabolismo
6.
Int Arch Allergy Immunol ; 142(3): 255-64, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17114891

RESUMO

BACKGROUND: Recent studies in murine models of allergic contact dermatitis have shown that systemic treatment with pimecrolimus in contrast to tacrolimus did not inhibit the sensitization phase, whereas both compounds equivalently suppressed the inflammatory response in sensitized animals. This finding indicated a differential sensitivity of antigen-naïve and primed T cells towards pimecrolimus and tacrolimus. METHODS: T cells obtained from healthy and allergic donors were subjected to primary and secondary stimulation by allogeneic or staphylococcal superantigen-presenting dendritic cells (DC). Human skin-derived, allergen-specific T cell clones from an atopic dermatitis patient were activated by anti-CD3 antibodies or by specific allergen-presenting DC. The inhibition of T cell proliferation and cytokine release by graded doses of calcineurin inhibitors was evaluated. RESULTS: Primary stimulation of T cells was inhibited by pimecrolimus with an approximately 8-fold lower potency as compared with tacrolimus. In contrast, the secondary response of ex vivo expanded T cells activated by allogeneic or staphylococcal superantigen-presenting DC was inhibited by both compounds with equivalent potency. Likewise, both drugs showed very similar potency to inhibit the proliferation and cytokine synthesis from antigen- stimulated T cell clones and the induction of cytokines in Jurkat T cells. CONCLUSION: These data indicate that pimecrolimus has a selectivity for antigen-primed memory T cells not seen with tacrolimus.


Assuntos
Imunossupressores/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/efeitos dos fármacos , Células Dendríticas/imunologia , Dermatite Atópica/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas In Vitro , Células Jurkat , Teste de Cultura Mista de Linfócitos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...