Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 9(7): 2325-2336, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31097479

RESUMO

We have estimated the average genetic diversity of two Glycine annual and six perennial species based upon 76 orthologous gene sets and performed phylogenetic analysis, divergence analysis and tests for departure from neutrality of the eight species using 52 orthologous gene sets. In addition, 367 orthologous gene sets were used to estimate the relationships of 11 G. canescens accessions. Among the perennials, G. canescens showed the highest nucleotide diversity. The other perennials, except for G. tomentella, had higher nucleotide diversity than the two annuals. Phylogenetic analysis of the Glycine showed a similar genome grouping with the previous report except for G. cyrtoloba and G. stenophita which formed a sister clade in the study. Divergence analysis supported the phylogenetic relationships that G. falcata was the most divergent from G. max, followed by G. cyrtoloba, G. syndetika, G. tomentella D3, G. stenophita and G. canescens Most genic sequences were homogeneous in the levels of polymorphism and divergence between G. max and other Glycine species based on the HKA test, thus, Glycine perennials may have experienced a very similar evolution as inferred by trans-specific mutation analysis. The greater genetic diversity of most perennial Glycine species and their origins from the warmer and drier climates of Australia suggests the perennials maybe a potential source of heat and drought resistance that will be of value in the face of climate change.


Assuntos
Fabaceae/classificação , Fabaceae/genética , Variação Genética , Filogenia , Austrália , Evolução Molecular , Geografia , Filogeografia , Polimorfismo Genético
2.
G3 (Bethesda) ; 5(10): 1999-2006, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26224783

RESUMO

The United States Department of Agriculture, Soybean Germplasm Collection includes 18,480 domesticated soybean and 1168 wild soybean accessions introduced from 84 countries or developed in the United States. This collection was genotyped with the SoySNP50K BeadChip containing greater than 50K single-nucleotide polymorphisms. Redundant accessions were identified in the collection, and distinct genetic backgrounds of soybean from different geographic origins were observed that could be a unique resource for soybean genetic improvement. We detected a dramatic reduction of genetic diversity based on linkage disequilibrium and haplotype structure analyses of the wild, landrace, and North American cultivar populations and identified candidate regions associated with domestication and selection imposed by North American breeding. We constructed the first soybean haplotype block maps in the wild, landrace, and North American cultivar populations and observed that most recombination events occurred in the regions between haplotype blocks. These haplotype maps are crucial for association mapping aimed at the identification of genes controlling traits of economic importance. A case-control association test delimited potential genomic regions along seven chromosomes that most likely contain genes controlling seed weight in domesticated soybean. The resulting dataset will facilitate germplasm utilization, identification of genes controlling important traits, and will accelerate the creation of soybean varieties with improved seed yield and quality.


Assuntos
Impressões Digitais de DNA , Pesquisa em Genética , Genoma de Planta , Genômica , Glycine max/genética , Cruzamento , Impressões Digitais de DNA/métodos , Genética Populacional , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Sementes
3.
PLoS One ; 8(1): e54985, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372807

RESUMO

The objective of this research was to identify single nucleotide polymorphisms (SNPs) and to develop an Illumina Infinium BeadChip that contained over 50,000 SNPs from soybean (Glycine max L. Merr.). A total of 498,921,777 reads 35-45 bp in length were obtained from DNA sequence analysis of reduced representation libraries from several soybean accessions which included six cultivated and two wild soybean (G. soja Sieb. et Zucc.) genotypes. These reads were mapped to the soybean whole genome sequence and 209,903 SNPs were identified. After applying several filters, a total of 146,161 of the 209,903 SNPs were determined to be ideal candidates for Illumina Infinium II BeadChip design. To equalize the distance between selected SNPs, increase assay success rate, and minimize the number of SNPs with low minor allele frequency, an iteration algorithm based on a selection index was developed and used to select 60,800 SNPs for Infinium BeadChip design. Of the 60,800 SNPs, 50,701 were targeted to euchromatic regions and 10,000 to heterochromatic regions of the 20 soybean chromosomes. In addition, 99 SNPs were targeted to unanchored sequence scaffolds. Of the 60,800 SNPs, a total of 52,041 passed Illumina's manufacturing phase to produce the SoySNP50K iSelect BeadChip. Validation of the SoySNP50K chip with 96 landrace genotypes, 96 elite cultivars and 96 wild soybean accessions showed that 47,337 SNPs were polymorphic and generated successful SNP allele calls. In addition, 40,841 of the 47,337 SNPs (86%) had minor allele frequencies ≥ 10% among the landraces, elite cultivars and the wild soybean accessions. A total of 620 and 42 candidate regions which may be associated with domestication and recent selection were identified, respectively. The SoySNP50K iSelect SNP beadchip will be a powerful tool for characterizing soybean genetic diversity and linkage disequilibrium, and for constructing high resolution linkage maps to improve the soybean whole genome sequence assembly.


Assuntos
Genoma de Planta , Técnicas de Genotipagem , Glycine max/genética , Polimorfismo de Nucleotídeo Único , Alelos , Cromossomos de Plantas , Evolução Molecular , Frequência do Gene , Ligação Genética , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
4.
BMC Genomics ; 11: 475, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20712881

RESUMO

BACKGROUND: Next generation sequencing has significantly increased the speed at which single nucleotide polymorphisms (SNPs) can be discovered and subsequently used as molecular markers for research. Unfortunately, for species such as common bean (Phaseolus vulgaris L.) which do not have a whole genome sequence available, the use of next generation sequencing for SNP discovery is much more difficult and costly. To this end we developed a method which couples sequences obtained from the Roche 454-FLX system (454) with the Illumina Genome Analyzer (GA) for high-throughput SNP discovery. RESULTS: Using a multi-tier reduced representation library we discovered a total of 3,487 SNPs of which 2,795 contained sufficient flanking genomic sequence for SNP assay development. Using Sanger sequencing to determine the validation rate of these SNPs, we found that 86% are likely to be true SNPs. Furthermore, we designed a GoldenGate assay which contained 1,050 of the 3,487 predicted SNPs. A total of 827 of the 1,050 SNPs produced a working GoldenGate assay (79%). CONCLUSIONS: Through combining two next generation sequencing techniques we have developed a method that allows high-throughput SNP discovery in any diploid organism without the need of a whole genome sequence or the creation of normalized cDNA libraries. The need to only perform one 454 run and one GA sequencer run allows high-throughput SNP discovery with sufficient sequence for assay development to be performed in organisms, such as common bean, which have limited genomic resources.


Assuntos
Phaseolus/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Bases de Dados de Ácidos Nucleicos , Genoma de Planta
5.
BMC Genomics ; 11: 38, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20078886

RESUMO

BACKGROUND: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds. RESULTS: A total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%. CONCLUSION: We have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8x whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism.


Assuntos
DNA de Plantas/análise , Genoma de Planta , Glycine max/química , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , DNA de Plantas/genética , Bases de Dados de Ácidos Nucleicos , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA