Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Zoo Wildl Med ; 52(2): 592-603, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34130402

RESUMO

Five genetically distinct macropodid marsupial herpesviruses have been reported [Macropodid alphaherpesviruses 1 and 2 (MaHV-1 and -2); Macropodid herpesviruses 3 to 5 (MaHV-3 to -5)]. MaHV-2 was originally isolated from an outbreak of fatal disease in captive quokkas (Setonix brachyurus) that were in contact with other macropodid species. This warranted a survey of the presence of herpesviruses in this threatened and endemic Western Australian (WA) wallaby. Blood samples from 142 apparently healthy quokkas were tested for exposure to MaHV-1 and -2 by serology. Of these 142, 121 [Rottnest Island (RI), n = 93; mainland WA, n = 28] were tested for herpesvirus infection by polymerase chain reaction (PCR). Antibodies to MaHV-1 and -2 were detected in one individual [prevalence, 0.7%; 95% confidence interval (CI), 0.1%-3.2%] from the mainland and none from RI. However, a novel gammaherpesvirus [designated Macropodid herpesvirus 6 (MaHV-6)] was detected by PCR in the blood of 13 of 121 individuals (11%; 95% CI, 6.2-17.2). Infection with MaHV-6 was significantly more prevalent on the mainland (7/28; i.e., 25%) compared with RI (6/93; i.e., 6.45%; difference in sample proportions, 95% CI, 6%-32%; P = 0.015). There was no association (P > 0.05) between infection with MaHV-6 and differences in hematology, blood chemistry, peripheral blood cell morphologies, or on clinical status. There was a significant association between infection with MaHV-6 and the presence of Theileria spp. in blood [odds ratio (OR) = 11.0; 95% CI, 2.31-52.3; P = 0.001] and yeast in the nasal lining (OR = 7.0; 95% CI, 1.54-31.8; P = 0.021), suggesting that quokkas may be more susceptible to infection with these microorganisms if also infected with MaHV-6. MaHV-6 infection may be a catalyst for vulnerability to disease with other infectious agents and may pose a significant threat to other macropods. These findings have implications for in situ and ex situ management programs of quokkas.


Assuntos
Animais Selvagens , Gammaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/veterinária , Macropodidae/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Espécies em Perigo de Extinção , Feminino , Gammaherpesvirinae/genética , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Macropodidae/sangue , Masculino , Filogenia , Austrália Ocidental/epidemiologia
2.
Front Vet Sci ; 5: 224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30320126

RESUMO

The risk of respiratory disease in the transported horse can increase as a consequence of immunosuppression and stress associated primarily with opportunistic bacterial proliferation and viral reactivation. This study examines the ecology of equid herpesviruses (EHV) in these horses, exploring reactivation and changes in infection and shedding associated with transport, and any potential contributions to transport-related respiratory disease. Twelve horses were subjected to an 8-h road-transport event. Antibodies to EHV-1 and EHV-4 were detected by ELISA in serum collected prior to, immediately after and 2 weeks post transport. Respiratory tract endoscopy and tracheal washes were collected prior to and 5 days after transportation. Nasal swabs collected prior to, immediately after, 1 and 5 days following transport were screened for EHV-1,-2,-4,-5 using qPCR. Six horses had persistent neutrophilic airway infiltrates post transportation, indicative of subclinical respiratory disease. No horses were qPCR positive for either of the alphaherpesviruses (i.e., EHV-1/-4) nor did any seroconvert to either virus. Four out of nine horses positive for either EHV-2 or EHV-5 on qPCR prior to transport developed neutrophilic airway inflammation. Five horses showed increasingly positive readings on qPCR (i.e., reduced Cq) for EHV-2 after transportation and seven out of eleven horses positive for EHV-2 after transport shared strains of high sequence similarity with other horses in the study. One EHV-2 virus detected in one horse after transport was genetically different which may be due to reactivation. The clinical significance of EHV-2 and EHV-5 remains in question. However these results indicate that transportation may lead to increased shedding, transmission and reactivation of EHV-2 and EHV-5 but not EHV-1/-4. Unlike previous work focusing on the role of alphaherpesviruses, this research suggests that investigation of the gammaherpesviruses (i.e., EHV-2/-5) in transport-related disease should not be dismissed, particularly given that these viruses can encode suppressive immunomodulators that may affect host health.

3.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070686

RESUMO

Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that infects chickens, causing upper respiratory tract disease and significant losses to poultry industries worldwide. Glycoprotein G (gG) is a broad-range viral chemokine-binding protein conserved among most alphaherpesviruses, including ILTV. A number of studies comparing the immunological parameters between infection with gG-expressing and gG-deficient ILTV strains have demonstrated that expression of gG is associated with increased virulence, modification of the amount and the composition of the inflammatory response, and modulation of the immune responses toward antibody production and away from cell-mediated immune responses. The aims of the current study were to examine the establishment of infection and inflammation by ILTV and determine how gG influences that response to infection. In vitro infection studies using tracheal organ tissue specimen cultures and blood-derived monocytes and in vivo infection studies in specific-pathogen-free chickens showed that leukocyte recruitment to the site of infection is an important component of the induced pathology and that this is influenced by the expression of ILTV gG and changes in the transcription of the chicken orthologues of mammalian CXC chemokine ligand 8 (CXCL8), chicken CXCLi1 and chicken CXCLi2, among other cytokines and chemokines. The results from this study demonstrate that ILTV gG interferes with chemokine and cytokine transcription at different steps of the inflammatory cascade, thus altering inflammation, virulence, and the balance of the immune response to infection.IMPORTANCE Infectious laryngotracheitis virus is an alphaherpesvirus that expresses gG, a conserved broad-range viral chemokine-binding protein known to interfere with host immune responses. However, little is known about how gG modifies virulence and influences the inflammatory signaling cascade associated with infection. Here, data from in vitro and in vivo infection studies are presented. These data show that gG has a direct impact on the transcription of cytokines and chemokine ligands in vitro (such as chicken CXCL8 orthologues, among others), which explains the altered balance of the inflammatory response that is associated with gG during ILTV infection of the upper respiratory tract of chickens. This is the first report to associate gG with the dysregulation of cytokine transcription at different stages of the inflammatory cascade triggered by ILTV infection of the natural host.


Assuntos
Quimiocinas/genética , Citocinas/genética , Infecções por Herpesviridae/imunologia , Herpesvirus Galináceo 1/imunologia , Herpesvirus Galináceo 1/fisiologia , Mediadores da Inflamação/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Antivirais/sangue , Quimiocinas/imunologia , Quimiocinas/metabolismo , Galinhas/virologia , Citocinas/imunologia , Citocinas/metabolismo , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/química , Herpesvirus Galináceo 1/genética , Mediadores da Inflamação/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Interleucina-8/metabolismo , Técnicas de Cultura de Órgãos , Doenças das Aves Domésticas/imunologia , Ligação Proteica , Organismos Livres de Patógenos Específicos , Traqueia/virologia , Virulência
4.
J Gen Virol ; 98(3): 461-470, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27902371

RESUMO

Equine herpesvirus 5 (EHV5) is a commonly detected gammaherpesvirus, which, along with the closely related EHV2, constitute the only two known percaviruses that infect horses. Apart from detection in horse populations worldwide and the recent publication of the whole genome, there is little known about the biology and pathogenesis of this virus, with many assumptions made by parallels with EHV2. The long-term survival of gammaherpesviruses within infected hosts involves the establishment and maintenance of latency in selected cell and tissues types, particularly lymphocytes. A latent gammaherpesvirus infection is characterized by a limited number of genes expressing in a particular cell or tissue type. In this study, we have used in vitro co-culturing to detect EHV5 in equine PBMCs and characterize the predominant cellular site for the establishment and maintenance of a latent infection. These experiments were conducted by isolating PBMCs from 10 horses and sorting subpopulations into two T lymphocyte (CD4 and CD8), B lymphocyte and macrophage enriched or depleted fractions. These lymphocyte and macrophage fractions were examined for the presence of latent EHV5 by in vitro co-culturing with equine foetal kidney cells. The lymphocyte fraction enriched with B lymphocytes had a significantly increased (P=0.005) number of plaques formed during co-culturing, whereas the B lymphocyte depleted fraction had a significant reduction in the number of plaques formed after co-culturing. Taken together, these results demonstrate that equine gammaherpesviruses establish latency in the equine PBMCs, with the predominant site for maintenance of latent virus being B lymphocytes.


Assuntos
Linfócitos B/virologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Doenças dos Cavalos/virologia , Replicação Viral , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Técnicas de Cocultura , Citometria de Fluxo , Gammaherpesvirinae/genética , Gammaherpesvirinae/isolamento & purificação , Genoma Viral , Infecções por Herpesviridae/imunologia , Doenças dos Cavalos/imunologia , Cavalos , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/virologia
5.
BMC Genomics ; 17: 704, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27589862

RESUMO

BACKGROUND: Felid herpesvirus 1 (FHV-1) causes upper respiratory tract diseases in cats worldwide, including nasal and ocular discharge, conjunctivitis and oral ulceration. The nature and severity of disease can vary between clinical cases. Genetic determinants of virulence are likely to contribute to differences in the in vivo phenotype of FHV-1 isolates, but to date there have been limited studies investigating FHV-1 genetic diversity. This study used next generation sequencing to compare the genomes of contemporary Australian clinical isolates of FHV-1, vaccine isolates and historical clinical isolates, including isolates that predated the introduction of live attenuated vaccines into Australia. Analysis of the genome sequences aimed to assess the level of genetic diversity, identify potential genetic markers that could influence the in vivo phenotype of the isolates and examine the sequences for evidence of recombination. RESULTS: The full genome sequences of 26 isolates of FHV-1 were determined, including two vaccine isolates and 24 clinical isolates that were collected over a period of approximately 40 years. Analysis of the genome sequences revealed a remarkably low level of diversity (0.0-0.01 %) between the isolates. No potential genetic determinants of virulence were identified, but unique single nucleotide polymorphisms (SNPs) in the UL28 and UL44 genes were detected in the vaccine isolates that were not present in the clinical isolates. No evidence of FHV-1 recombination was detected using multiple methods of recombination detection, even though many of the isolates originated from cats housed in a shelter environment where high infective pressures were likely to exist. Evidence of displacement of dominant FHV-1 isolates with other (genetically distinct) FHV-1 isolates over time was observed amongst the isolates obtained from the shelter-housed animals. CONCLUSIONS: The results show that FHV-1 genomes are highly conserved. The lack of recombination detected in the FHV-1 genomes suggests that the risk of attenuated vaccines recombining to generate virulent field viruses is lower than has been suggested for some other herpesviruses. The SNPs detected only in the vaccine isolates offer the potential to develop PCR-based methods of differentiating vaccine and clinical isolates of FHV-1 in order to facilitate future epidemiological studies.


Assuntos
Doenças do Gato/virologia , Variação Genética , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Animais , Gatos , Feminino , Genoma Viral , Genômica/métodos , Herpesviridae/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Polimorfismo Genético , Recombinação Genética
6.
BMC Genomics ; 17: 70, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26800886

RESUMO

BACKGROUND: While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). RESULTS: The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67% nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. CONCLUSIONS: This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions.


Assuntos
Herpesviridae/genética , Animais , Genoma Viral/genética , Herpesviridae/classificação , Fases de Leitura Aberta/genética , Proteínas Virais/genética
7.
PLoS One ; 10(7): e0133807, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222660

RESUMO

Herpesviruses have been reported in several marsupial species, but molecular classification has been limited to four herpesviruses in macropodids, a gammaherpesvirus in two antechinus species (Antechinus flavipes and Antechinus agilis), a gammaherpesvirus in a potoroid, the eastern bettong (Bettongia gaimardi) and two gammaherpesviruses in koalas (Phascolarctos cinereus). In this study we examined a range of Australian marsupials for the presence of herpesviruses using molecular and serological techniques, and also assessed risk factors associated with herpesvirus infection. Our study population included 99 koalas (Phascolarctos cinereus), 96 eastern grey kangaroos (Macropus giganteus), 50 Tasmanian devils (Sarcophilus harrisii) and 33 common wombats (Vombatus ursinius). In total, six novel herpesviruses (one alphaherpesvirus and five gammaherpesviruses) were identified in various host species. The overall prevalence of detection of herpesvirus DNA in our study population was 27.2% (95% confidence interval (CI) of 22.6-32.2%), but this varied between species and reached as high as 45.4% (95% CI 28.1-63.7%) in common wombats. Serum antibodies to two closely related macropodid herpesviruses (macropodid herpesvirus 1 and 2) were detected in 44.3% (95% CI 33.1-55.9%) of animals tested. This also varied between species and was as high as 92% (95% CI 74.0-99.0%) in eastern grey kangaroos. A number of epidemiological variables were identified as positive predictors for the presence of herpesvirus DNA in the marsupial samples evaluated. The most striking association was observed in koalas, where the presence of Chlamydia pecorum DNA was strongly associated with the presence of herpesvirus DNA (Odds Ratio = 60, 95% CI 12.1-297.8). Our results demonstrate the common presence of herpesviruses in Australian marsupials and provide directions for future research.


Assuntos
Infecções por Herpesviridae/veterinária , Marsupiais/virologia , Sequência de Aminoácidos , Animais , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Feminino , Herpesviridae/enzimologia , Herpesviridae/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/epidemiologia , Masculino , Dados de Sequência Molecular , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos
8.
Vet Microbiol ; 177(1-2): 25-31, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801938

RESUMO

Recombination is an important contributor to genomic evolution in many viral families, including the Caliciviridae. While it is known that genomic recombination in caliciviruses contributes to their rapid evolution, the precise molecular mechanisms are poorly understood. The majority of reported recombination events in feline calicivirus (FCV) occur at a "hot spot" between the non-structural protein coding region (open reading frame 1) and structural protein coding region (open reading frame 2). To gain a better understanding of the rate of recombination at this point, we developed a quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay to quantify the rate of recombination between two divergent strains of FCV during co-infection in cell culture. The assay utilised virus-specific primers upstream and downstream of the recombinational "hot spot" that hybridise with only one of the strains in the co-infection. Recombinant progeny that shared ORF1 sequence identity with one parental virus and ORF2 sequence identity with the other parental virus, and the site of recombination, was confirmed by sequencing the amplicon generated by the assay. Recombinants were detected in co-infected cells using this assay, but not in cells infected with single strains that were mixed together following infection, thus confirming its specificity. Recombination between two FCVs in co-infected cell cultures was estimated to occur at a rate of at least 6.8×10(-6) single direction recombinant genomes per parental virus genome. Further application of this assay will enable factors influencing recombination in caliciviruses to be explored in greater detail, both in vitro and in vivo.


Assuntos
Calicivirus Felino/genética , Recombinação Genética , Animais , Sequência de Bases , Gatos , Células Cultivadas , Coinfecção , Primers do DNA/genética , Genoma Viral , Fases de Leitura Aberta
9.
J Wildl Dis ; 50(2): 334-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24499331

RESUMO

We detected herpesvirus infection in a male yellow-footed antechinus (Antechinus flavipes) and male agile antechinus (Antechinus agilis) during the period of postmating male antechinus immunosuppression and mortality. Histopathologic examination of tissues revealed lesions consistent with herpesvirus infection in the prostate of both animals. Herpesvirus virions were observed by transmission electron microscopy in the prostate tissue collected from the male yellow-footed antechinus. Herpesvirus DNA was detected in prostate, liver, lung, kidney, spleen, and ocular/nasal tissues using a pan-herpesvirus PCR targeting the viral DNA polymerase. Nucleotide sequencing identified a novel herpesvirus from the Gammaherpesvirinae subfamily that we have tentatively designated dasyurid herpesvirus 1 (DaHV-1).


Assuntos
Gammaherpesvirinae/classificação , Gammaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/veterinária , Marsupiais/virologia , Sequência de Aminoácidos , Animais , Austrália/epidemiologia , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Masculino , Dados de Sequência Molecular , Filogenia , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Vet Microbiol ; 169(1-2): 50-7, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24418044

RESUMO

A single nucleotide polymorphism (SNP) has been previously associated with EHV-1 neurological disease in several countries around the world. This disease is very uncommon in Australia and little information is available about the presence of this SNP in Australian EHV-1 isolates. The ORF30 sequence of 66 Australian EHV-1 isolates was determined and the genotype was compared to the disease manifestation of the case from which the virus was isolated. Of the 66 isolates, 61 were from cases of abortion and 5 were cases associated with equine herpesvirus myeloencephalopathy (EHM). There was no association between pathotype and genotype in these isolates. In total, 64 of the 66 isolates encoded N752, including 4 isolates from EHM cases. The ORF30 sequence was also determined for 14 EHV-4 isolates, including 2 isolates from confirmed EHV-4 abortion cases. All 14 EHV-4 isolates had aspartic acid at the position equivalent to EHV-1 AA752. Aspartic acid was also confirmed in this position for the single isolate of AHV-3 sequenced in this study. The nucleotide sequence of ORF68 was also determined and showed considerable genetic heterogeneity in the EHV-1 isolates, however, this ORF was highly conserved among the 14 EHV-4 isolates sequenced, with only one SNP identified among 7 isolates. These results confirm that the EHV1 ORF30 N752 is unique and that the D752 sequence is most likely to be the true parent strain of this virus. We suggest that the abortigenic form of EHV-1 should be considered to be the more recently emerged mutant.


Assuntos
Variação Genética , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 4/genética , Doenças dos Cavalos/virologia , Fases de Leitura Aberta , Varicellovirus/genética , Aborto Animal/virologia , Sequência de Aminoácidos , Animais , Austrália , Sequência de Bases , Feminino , Genes Virais , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1/isolamento & purificação , Herpesvirus Equídeo 4/isolamento & purificação , Cavalos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Sequência de DNA , Varicellovirus/isolamento & purificação , Proteínas Virais/química , Proteínas Virais/genética
11.
PLoS One ; 8(2): e55121, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383306

RESUMO

In contrast to the RNA viruses, the genome of large DNA viruses such as herpesviruses have been considered to be relatively stable. Intra-specific recombination has been proposed as an important, but underestimated, driving force in herpesvirus evolution. Recently, two distinct field strains of infectious laryngotracheitis virus (ILTV) have been shown to have arisen from independent recombination events between different commercial ILTV vaccines. In this study we sequenced the genomes of additional ILTV strains and also utilized other recently updated complete genome sequences of ILTV to confirm the existence of a number of ILTV recombinants in nature. Multiple recombination events were detected in the unique long and repeat regions of the genome, but not in the unique short region. Most recombinants contained a pair of crossover points between two distinct lineages of ILTV, corresponding to the European origin and the Australian origin vaccine strains of ILTV. These results suggest that there are two distinct genotypic lineages of ILTV and that these commonly recombine in the field.


Assuntos
Galinhas/virologia , Evolução Molecular , Genoma Viral/genética , Herpesvirus Galináceo 1/genética , Filogenia , Recombinação Genética/genética , Sequência de Aminoácidos , Animais , Austrália , Sequência de Bases , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência , Especificidade da Espécie
12.
J Wildl Dis ; 49(1): 143-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23307380

RESUMO

We isolated a macropodid herpesvirus from a free-ranging eastern grey kangaroo (Macropus giganteous) displaying clinical signs of respiratory disease and possibly neurologic disease. Sequence analysis of the herpesvirus glycoprotein G (gG) and glycoprotein B (gB) genes revealed that the virus was an alphaherpesvirus most closely related to macropodid herpesvirus 2 (MaHV-2) with 82.7% gG and 94.6% gB amino acid sequence identity. Serologic analyses showed similar cross-neutralization patterns to those of MaHV-2. The two viruses had different growth characteristics in cell culture. Most notably, this virus formed significantly larger plaques and extensive syncytia when compared with MaHV-2. No syncytia were observed for MaHV-2. Restriction endonuclease analysis of whole viral genomes demonstrated distinct restriction endonuclease cleavage patterns for all three macropodid herpesviruses. These studies suggest that a distinct macropodid alphaherpesvirus may be capable of infecting and causing disease in eastern grey kangaroos.


Assuntos
Alphaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/virologia , Macropodidae/virologia , Alphaherpesvirinae/classificação , Alphaherpesvirinae/genética , Sequência de Aminoácidos , Animais , Animais Selvagens/virologia , Sequência de Bases , Efeito Citopatogênico Viral , DNA Viral/análise , Infecções por Herpesviridae/epidemiologia , Dados de Sequência Molecular , Testes de Neutralização/veterinária , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vitória/epidemiologia
13.
Science ; 337(6091): 188, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22798607

RESUMO

Recombination between herpesviruses has been seen in vitro and in vivo under experimental conditions. This has raised safety concerns about using attenuated herpesvirus vaccines in human and veterinary medicine and adds to other known concerns associated with their use, including reversion to virulence and disease arising from recurrent reactivation of lifelong chronic infection. We used high-throughput sequencing to investigate relationships between emergent field strains and vaccine strains of infectious laryngotracheitis virus (ILTV, gallid herpesvirus 1). We show that independent recombination events between distinct attenuated vaccine strains resulted in virulent recombinant viruses that became the dominant strains responsible for widespread disease in Australian commercial poultry flocks. These findings highlight the risks of using multiple different attenuated herpesvirus vaccines, or vectors, in the same populations.


Assuntos
Galinhas , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/patogenicidade , Vacinas contra Herpesvirus , Doenças das Aves Domésticas/virologia , Recombinação Genética , Animais , DNA Viral/genética , Genoma Viral , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/imunologia , Herpesvirus Galináceo 1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Organismos Livres de Patógenos Específicos , Vacinas Atenuadas , Virulência , Replicação Viral
14.
J Wildl Dis ; 48(1): 226-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22247398

RESUMO

A second novel gammaherpesvirus was detected in a free-ranging koala (Phascolarctos cinereus) shown previously to be infected with phascolarctid herpesvirus 1. Analysis of the DNA polymerase gene showed that the virus was genetically distinct from all known gammaherpesviruses. This is the first reported dual gammaherpesvirus infection in an Australian marsupial.


Assuntos
DNA Viral/análise , Gammaherpesvirinae/isolamento & purificação , Phascolarctidae/virologia , Animais , Animais Selvagens , Reação em Cadeia da Polimerase/veterinária
15.
Vaccine ; 29(52): 9583-7, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22044743

RESUMO

Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in poultry. Live attenuated ILTV vaccines have been used extensively to help control outbreaks of disease. Two Australian-origin attenuated vaccine strains, SA2 and A20 ILTV, are commercially available and are in frequent use in Australia. Both these vaccines are of chicken embryo origin (CEO). The A20 ILTV strain was developed from the SA2 ILTV strain by sequential passage of SA2 ILTV in tissue culture in order to reduce its residual virulence. Previous studies in our laboratories have demonstrated the greater attenuation of A20 ILTV under controlled experimental conditions, but the genetic basis of the in vivo phenotypes of A20 and SA2 ILTV has not been elucidated. In this study, the genetic differences between A20 and SA2 ILTV were examined by performing complete genome sequencing and comparative analysis. The genome sequences were also compared to a reference sequence from another CEO ILTV vaccine (Serva ILTV: GenBank accession number HQ_630064) of European-origin. Additional in ovo studies to assess cell to cell spread were performed in order to allow further comparisons of the pathogenicity of SA2 and A20 ILTV. The sequencing results showed that the genome sizes of SA2 and A20 ILTV were 152,975 and 152,978bp, respectively, while Serva ILTV had a genome size of 152,630bp. The genomes of SA2 and A20 ILTV shared 99.9% nucleotide sequence identity with each other, but only 99.2% identity with Serva ILTV. In complete genome alignments between SA2 and A20 ILTV, a total of 24 single nucleotide polymorphisms (SNPs) were identified, but only two of these were non-synonymous. These were located in the ORF B and UL15 genes. Four indels were detected in non-coding regions. The findings from this study demonstrate the general genetic stability of ILTV, but also show that non-synonymous changes in the ORF B and UL15 genes have arisen following tissue culture passage of SA2 ILTV to produce the A20 vaccine. It is likely that these non-synonymous changes are related to the greater attenuation of A20 ILTV compared to SA2 ILTV, and to the reduced ability of A20 ILTV to spread from cell to cell, as observed in this study. The results from this study also demonstrate the divergence between the genomes of the Australian-origin ILTV vaccine strains and the Serva vaccine strain.


Assuntos
DNA Viral/genética , Genoma Viral , Herpesvirus Galináceo 1/genética , Animais , Austrália , Embrião de Galinha , Galinhas , DNA Viral/química , Herpesvirus Galináceo 1/patogenicidade , Mutação INDEL , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sintenia , Vacinas Atenuadas/genética , Virulência
16.
BMC Genomics ; 12: 197, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21501528

RESUMO

BACKGROUND: Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. RESULTS: The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. CONCLUSIONS: This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains.


Assuntos
Genoma Viral/genética , Genômica/métodos , Iltovirus/genética , Sequência de Aminoácidos , Animais , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Análise de Sequência de DNA , Vacinas Atenuadas/genética
17.
Virus Res ; 140(1-2): 205-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19041914

RESUMO

Equine rhinitis B virus (ERBV), genus Erbovirus, is most closely related to the Cardiovirus genus in the family Picornaviridae. The structural proteins (VP1-4) of erboviruses are not well described, but are predicted by sequence to be 35, 29, 26 and 7 kDa. Methods for the purification of cardioviruses (polyethylene glycol, trypsin treatment) were used to characterise the structural proteins of ERBV1. Only one of the virus proteins detected was an expected molecular mass, and this 26 kDa protein was identified as VP3 by N-terminal amino acid sequencing. N-terminal sequencing of the 56 and a 29 kDa protein identified sequences consistent with VP2 and VP1 respectively, despite these being 27 kDa larger and 6 kDa smaller than predicted. Virus purified without trypsin showed proteins more consistent with masses predicted for VP1, VP2 and VP3 at 35, 29 and 26 kDa respectively. These proteins were further identified with antibodies affinity purified to recombinant VP1, VP2, VP3 produced in E. coli. Interestingly, antibodies affinity purified to the non-structural protein 3C(pro), produced in insect cells, strongly detected a 27 kDa protein in western blots of virus purified with and without trypsin treatment, suggesting the non-structural 27 kDa 3C(pro) co-purifies with ERBV1 virions.


Assuntos
Erbovirus/genética , Proteínas não Estruturais Virais/isolamento & purificação , Vírion/genética , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/metabolismo , Chlorocebus aethiops , Peso Molecular , Células Vero , Proteínas não Estruturais Virais/genética
18.
BMC Microbiol ; 8: 124, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18647421

RESUMO

BACKGROUND: Mycoplasma pneumoniae is a human pathogen that is a common cause of community-acquired pneumonia. It harbours a large number of lipoprotein genes, most of which are of unknown function. Because of their location on the cell surface, these proteins are likely to be involved in the bacterial response to environmental changes, or in the initial stages of infection. The aim of this study was to determine if genes encoding surface lipoproteins are differentially expressed after contact with a human cell line, or after exposure to oxidative or acidic stress. RESULTS: Using qRT-PCR assays, we observed that the expression of a number of lipoprotein genes was up-regulated when M. pneumoniae was placed in contact with human cells. In contrast, lipoprotein expression was generally down-regulated or unchanged when exposed to either hydrogen peroxide or low pH (5.5). When exposed to low pH, the mRNA levels of four polycistronically transcribed genes in Lipoprotein Multigene Family 6 formed a gradient of decreasing quantity with increasing distance from a predicted promoter. CONCLUSION: The demonstrated transcriptional changes provide evidence for the functionality of these mostly unassigned genes and indicate that they are regulated in response to changes in environmental conditions. In addition we have shown that the members of Lipoprotein Gene Family 6 may be expressed polycistronically.


Assuntos
Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Pulmão/microbiologia , Mycoplasma pneumoniae/genética , Estresse Oxidativo , Aderência Bacteriana , Linhagem Celular Tumoral , Regulação para Baixo , Genes Bacterianos , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transcrição Gênica , Regulação para Cima
19.
J Gen Virol ; 86(Pt 8): 2323-2332, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16033980

RESUMO

Equine rhinitis B virus (ERBV), genus Erbovirus, family Picornaviridae, occurs as two serotypes, ERBV1 and ERBV2, and the few isolates previously tested were acid labile. Of 24 ERBV1 isolates tested in the studies reported here, 19 were acid labile and five were acid stable. The two available ERBV2 isolates, as expected, were acid labile. Nucleotide sequences of the P1 region encoding the capsid proteins VP1, VP2, VP3 and VP4 were determined for five acid-labile and three acid-stable ERBV1 isolates and one acid-labile ERBV2 isolate. The sequences were aligned with the published sequences of the prototype acid-labile ERBV1.1436/71 and the prototype ERBV2.313/75. The three acid-stable ERBV1 were closely related in a phylogenetic group that was distinct from the group of six acid-labile ERBV1, which were also closely related to each other. The two acid-labile ERBV2 formed a third distinct group. One acid-labile ERBV1 had a chimeric acid-labile/acid-stable ERBV1 P1 sequence, presumably because of a recombination event within VP2 and this was supported by SimPlot analysis. ERBV1 rabbit antiserum neutralized acid-stable and acid-labile ERBV1 isolates similarly. Accordingly, three distinct phylogenetic groups of erboviruses exist that are consistent with serotype and acid stability phenotypes.


Assuntos
Aphthovirus/genética , Genoma Viral , Ácidos/farmacologia , Sequência de Aminoácidos , Aphthovirus/classificação , Aphthovirus/efeitos dos fármacos , Proteínas do Capsídeo/genética , Variação Genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Sorotipagem
20.
J Gen Virol ; 83(Pt 3): 525-531, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11842247

RESUMO

Open reading frame (ORF) 71 genes of both equine herpesvirus-1 (EHV-1) and EHV-4 encode a unique glycoprotein, which has been described to vary in molecular mass from 200 to 450 kDa. Using PCR and nucleotide sequence analysis, it was shown that the ORF 71 genes of EHV-1 and EHV-4 are polymorphic due to a variable number of reiterated sequences in two regions, designated regions A and B. Region A was threonine-rich and was located near the N terminus. Region B comprised a 38 amino acid repeat near the C terminus that expanded following cell culture adaptation. Western blot analysis of viruses showed that EHV-4 gp2 was modified by glycosylation and that variation in region A resulted in the marked differences in the molecular mass of EHV-4 gp2.


Assuntos
Genes Virais/genética , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 4/genética , Fases de Leitura Aberta/genética , Polimorfismo Genético/genética , Proteínas Virais/química , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Austrália , Sequência de Bases , Western Blotting , Linhagem Celular , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Dados de Sequência Molecular , Peso Molecular , Nova Zelândia , Reação em Cadeia da Polimerase , Primatas/virologia , Sequências Repetitivas de Aminoácidos/genética , Inoculações Seriadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...