Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 18(4)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39089291

RESUMO

Polymeric bags are a widely applied, simple, and cost-effective method for the storage and offline analysis of gaseous samples. Various materials have been used as sampling bags, all known to contain impurities and differing in their cost, durability, and storage capabilities. Herein, we present a comparative study of several well-known bag materials, Tedlar (PVF), Kynar (PVDF), Teflon (PTFE), and Nalophan (PET), as well as a new material, ethylene vinyl copolymer (EVOH), commonly used for storing food. We investigated the influences of storage conditions, humidity, bag cleaning, and light exposure on volatile organic compound concentration (acetone, acetic acid, isoprene, benzene, limonene, among others) in samples of exhaled human breath stored in bags for up to 48 h. Specifically, we show high losses of short-chain fatty acids (SCFAs) in bags of all materials (for most SCFAs, less than 50% after 8 h of storage). We found that samples in Tedlar, Nalophan, and EVOH bags undergo changes in composition when exposed to UV radiation over a period of 48 h. We report high initial impurity levels in all the bags and their doubling after a period of 48 h. We compare secondary electrospray ionization and proton transfer reaction mass spectrometry in the context of offline analysis after storage in sampling bags. We provide an analytical perspective on the temporal evolution of bag contents by presenting the intensity changes of all significantm/zfeatures. We also present a simple, automated, and cost-effective offline sample introduction system, which enables controlled delivery of collected gaseous samples from polymeric bags into the mass spectrometer. Overall, our findings suggest that sampling bags exhibit high levels of impurities, are sensitive to several environmental factors (e.g. light exposure), and provide low recoveries for some classes of compounds, e.g. SCFAs.


Assuntos
Testes Respiratórios , Polímeros , Humanos , Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Polímeros/análise , Compostos Orgânicos Voláteis/análise , Expiração , Manejo de Espécimes/métodos , Manejo de Espécimes/instrumentação
2.
Chemistry ; 26(49): 11266-11275, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259329

RESUMO

In eukaryotes, mature mRNA is formed through modifications of precursor mRNA, one of which is 5' cap biosynthesis, involving RNA cap guanine-N7 methyltransferase (N7-MTase). N7-MTases are also encoded by some eukaryotic viruses and facilitate their replication. N7-MTase inhibitors have therapeutic potential, but their discovery is difficult because long RNA substrates are usually required for activity. Herein, we report a universal N7-MTase activity assay based on small-molecule fluorescent probes. We synthesized 12 fluorescent substrate analogues (GpppA and GpppG derivatives) varying in the dye type, dye attachment site, and linker length. GpppA labeled with pyrene at the 3'-O position of adenosine acted as an artificial substrate with the properties of a turn-off probe for all three tested N7-MTases (human, parasite, and viral). Using this compound, a N7-MTase inhibitor assay adaptable to high-throughput screening was developed and used to screen synthetic substrate analogues and a commercial library. Several inhibitors with nanomolar activities were identified.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Ensaios Enzimáticos , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Metiltransferases/metabolismo , Capuzes de RNA/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Metiltransferases/antagonistas & inibidores , Capuzes de RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA