Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2220477120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399405

RESUMO

In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Šand resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Šresulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.


Assuntos
Complexos de Proteínas Captadores de Luz , Proteobactérias , Proteobactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Análise Espectral , Transferência de Energia
2.
Annu Rev Phys Chem ; 74: 493-520, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36791782

RESUMO

Photosynthetic light harvesting exhibits near-unity quantum efficiency. The high efficiency is achieved through a series of energy and charge transfer steps within a network of pigment-containing proteins. Remarkably, high efficiency is conserved across many organisms despite differences in the protein structures and organization that allow each organism to respond to its own biological niche and the stressors within. In this review, we highlight recent progress toward understanding how organisms maintain optimal light-harvesting ability by acclimating to their environment. First, we review the building blocks of photosynthetic light harvesting, energy transfer, and time-resolved spectroscopic techniques. Then, we explore how three classes of photosynthetic organisms-purple bacteria, cyanobacteria, and green plants-optimize their light-harvesting apparatuses to their particular environment. Overall, research has shown that photosynthetic energy transfer is robust to changing environmental conditions, with each organism utilizing its own strategies to optimize photon capture in its particular biological niche.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Análise Espectral , Aclimatação , Luz
3.
J Phys Chem B ; 124(8): 1460-1469, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31971387

RESUMO

Photosynthetic light harvesting can occur with a remarkable near-unity quantum efficiency. The B800-850 complex, also known as light-harvesting complex 2 (LH2), is the primary light-harvesting complex in purple bacteria and has been extensively studied as a model system. The bacteriochlorophylls of the B800-850 complex are organized into two concentric rings, known as the B800 and B850 rings. However, depending on the species and growth conditions, the number of constituent subunits, the pigment geometry, and the absorption energies vary. While the dynamics of some B800-850 variants have been exhaustively characterized, others have not been measured. Furthermore, a direct and simultaneous comparison of how both structural and spectral differences between variants affect these dynamics has not been performed. In this work, we utilize ultrafast transient absorption measurements to compare the B800 to B850 energy-transfer rates in the B800-850 complex as a function of the number of subunits, geometry, and absorption energies. The nonameric B800-850 complex from Rhodobacter (Rb.) sphaeroides is 40% faster than the octameric B800-850 complex from Rhodospirillum (Rs.) molischianum, consistent with structure-based predictions. In contrast, the blue-shifted B800-820 complex from Rs. molischianum is only 20% faster than the B800-850 complex from Rs. molischianum despite an increase in the spectral overlap between the rings that would be expected to produce a larger increase in the energy-transfer rate. These measurements support current models that contain dark, higher-lying excitonic states to bridge the energy gap between rings, thereby maintaining similar energy-transfer dynamics. Overall, these results demonstrate that energy-transfer dynamics in the B800-850 complex are robust to the spectral and structural variations between species used to optimize energy capture and flow in purple bacteria.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter/metabolismo , Rhodospirillum/metabolismo , Cristalografia por Raios X , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Modelos Moleculares , Conformação Proteica
4.
Int J Biol Macromol ; 85: 200-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26751398

RESUMO

Recent studies have characterized the effects of aqueous ionic liquids on myoglobin unfolding for the broader purposes of understanding their effects on protein structures, stabilities, and ultimately biocompatibilities for future applications. Here, we investigated the effects of four different ionic liquids (ILs) on the thermal stability, unfolding kinetics, and tertiary shape of myoglobin. We compared results for four different ILs: 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIBF4); 1-butyl-3-methyl pyrrolidinium tetrafluoroborate (PyrrBF4); 1-ethyl-3-methyl imidazolium acetate (EMIAc); and tetramethylguanidinium acetate (TMGAc). Results showed that ILs accelerate myoglobin unfolding kinetics both through aqueous solution ionic strength effects and ionic liquid-specific effects. Arrhenius plots of observed rate constants reveal that some ILs lower the energy barrier to unfolding, possibly by destabilizing the native protein state. The magnitude of these ionic liquid effects correlates with their effects on protein thermodynamic stabilities. Hydrogen-deuterium exchange (HDX) experiments using ESI-MS showed that myoglobin exhibits a more open, and presumably less stable, tertiary shape in aqueous IL solutions. Overall, BMIBF4 and TMGAc exhibit the strongest effect on the myoglobin stability, unfolding rate, and tertiary structure while PyrrBF4 and EMIAc have weaker effects under our experimental conditions.


Assuntos
Líquidos Iônicos/química , Mioglobina/química , Desdobramento de Proteína , Animais , Cavalos , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Estabilidade Proteica , Termodinâmica
5.
J Phys Chem B ; 118(2): 406-12, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24354463

RESUMO

The use of ionic liquids in biochemical and biophysical applications has increased dramatically in recent years due to their interesting properties. We report results of a thermodynamic characterization of the chaotrope-induced denaturation of equine myoglobin in two different ionic liquid aqueous environments using a combined absorption/fluorescence spectroscopic approach. Denaturation by guanidinium hydrochloride was monitored by loss of heme absorptivity and limited unfolding structural information was obtained from Förster resonance energy transfer experiments. Results show that myoglobin unfolding is generally unchanged in the presence of ethylmethylimidazolium acetate (EMIAc) in aqueous solution up to 150 mM concentration but is facilitated by butylmethylimidazolium boron tetrafluoride (BMIBF4) in solution. The presence of 150 mM BMIBF4 alone does not induce unfolding but destabilizes the structure as observed by a decrease in threshold denaturant concentration for unfolding and an 80% decrease in the magnitude of ΔGunfolding from 44 kJ/mol in the absence of BMIBF4 to 8 kJ/mol in the presence of 150 mM BMIBF4. Thus, the BMIBF4 significantly destabilizes the myoglobin structure while the EMIAc does not, likely due to differences in anion interaction capabilities. This is confirmed with control studies using NaAc and LiBF4 solutions. EMIAc may be chosen as cosolvent additive with minimal effects on protein structure while BMIBF4 may be used as a supplement in protein folding experiments, potentially allowing access to proteins which have been traditionally difficult to denature as well as designing ionic liquids to match protein characteristics.


Assuntos
Guanidina/química , Líquidos Iônicos/química , Mioglobina/química , Boratos/química , Transferência Ressonante de Energia de Fluorescência , Mioglobina/metabolismo , Estrutura Terciária de Proteína , Desdobramento de Proteína , Acetato de Sódio/química , Soluções/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...