Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 39(6Part17): 3813, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28517475

RESUMO

PURPOSE: Beamlets are generated in a patient geometry in the presence of a magnetic field to investigate the effects of tissue density and magnetic field on beamlet dose distributions, which is important for the optimization of photon fluence to be delivered by a linac-MR system. METHODS: 50×50 mm2 fields were placed with isocenter in the middle of a patient's right lung. Each treatment field was decomposed into 100 beamlets (each 5×5 mm2 ). BEAMnrc scored the particle phase space at 100.2 cm from the source in the linac-MR geometry (isocentre at 126 cm) with parallel magnetic fields of 0, 0.56, and 3T. DOSXYZnrc was modified to score the energy deposited by particles from this phase space as a function of the beamlet the particle passed through. The calculation volume of 70×46×64 voxels encompassed the patient with a voxel size of 3×3×3 mm3 . Each beamlet was normalized to the dose calculated to a 3×3×3 mm3 voxel with isocenter at 5cm depth in a flat water tank without a magnetic field. RESULTS: Beamlet files were calculated on Western Canada's high performance computing cluster (Westgrid) using 100 processors, enabling simulation of 109 histories in less than 3 hours. The resulting files, which contained 3D dose distributions for all 100 beamlets, were 81 MB per field. The Monte Carlo uncertainty was also stored. The gyroradii for 1 MeV electron traversing field lines at 20 degrees are 2.9mm and 0.5mm for 0.56 and 3T fields respectively. The 0.56T parallel magnetic field has a small effect compared to the distortion of the beamlet introduced by the presence of lung. CONCLUSIONS: The effect of tissue heterogeneities is more significant than the effect of a 0.56T parallel magnetic field. A 3T field refocuses the dose in lung to the beamlet path and significantly reduces the lateral electron scatter.

2.
Med Phys ; 32(12): 3793-800, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16475779

RESUMO

We performed two-dimensional treatment verifications for ten patients planned and treated with helical tomotherapy. The treatment verification consisted of a film measurement as well as point dose measurements made with an ion chamber. The agreement between the calculated and the measured film dose distributions was evaluated with the gamma index calculated for three sets of criteria (2 mm and 2%, 4 mm and 3%, and 3 mm and 5%) as recommended in the literature. Good agreement was found between measured and calculated distributions without any need of normalization of the dose data but with dose map registration using reference marks. In this case, 69.8 +/- 17.2%, 92.6 +/- 9.0%, and 93.4 +/- 8.5% passed the 2 mm and 2%, 4 mm and 3%, and 3 mm and 5% criteria, respectively. Agreement was excellent when both normalization and manual registration of the dose maps was employed. In this case 91.2 +/- 5.6%, 99.0 +/- 1.4%, and 99.5 +/- 0.8% passed the 2 mm and 2%, 4 mm and 3%, and 3 mm and 5% criteria, respectively. The mean percent discrepancy for the point dose measurements was -0.5 +/- 1.1%, -2.4 +/- 3.7%, -1.1 +/- 7.3% for the high dose, low dose, and critical structure point, respectively. Three criteria for a satisfactory treatment verification in the high dose regions of a plan were established. For the un-normalized reference mark registered data 80% of pixels must pass the 3 mm and 5% criteria. For the normalized and manually registered data, 80% must pass the 2 mm and 2% criteria, and the point dose measurement must be within 2% of the calculated dose. All low dose region/critical structure point dose measurements were evaluated on a patient by patient basis. The criteria we recommend can be useful for the routine evaluation of treatment plans for tomotherapy systems.


Assuntos
Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Intensidade Modulada/estatística & dados numéricos , Fenômenos Biofísicos , Biofísica , Humanos , Lasers , Neoplasias/radioterapia , Imagens de Fantasmas , Radiometria/estatística & dados numéricos
3.
J Appl Clin Med Phys ; 3(2): 97-109, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11958650

RESUMO

An inverse treatment planning (ITP) module on a commercial treatment planning system (TPS) (Helax AB, Uppsala, Sweden) is being used for an in-house clinical trial for treatment of nasopharyngeal cancer with contralateral parotid sparing. Intensity modulated radiation therapy (IMRT) fields are delivered by step and shoot multileaf collimator (MLC) with a DMLC enabled Varian 2300 CD (Varian Associates, Palo Alto, CA). A series of testing procedures have been devised to quantify the modeling and delivery accuracy of routine clinical inverse planned IMRT using Helax TMS and the Varian step and shoot MLC delivery option. Testing was done on specific aspects of the TPS modeling germane to DMLC. Measured relative dose factors (head scatter plus phantom scatter) for small MLC fields, normalized to a 10x10 cm2 non-MLC field, were found to differ by 2-3% from the TPS values for the smallest of the fields tested. Relative distributions for small off axis fields were found to be in good agreement. A process for the routine clinical verification of IMRT fields has been implemented. Each IMRT field in an inverse plan is imported into a flat water tank plan and a "beam's eye view" (BEV) dose distribution is generated. This is compared to the corresponding measured BEV dose distribution. The IMRT verification process has also been performed using an anthropomorphic phantom. Large clinical fields (i.e., greater than 14.5 cm in the leaf direction) caused difficulties due to a vendor specific machine restriction, and several techniques for dealing with these were examined. These techniques were (i) the use of static stepping of closed junctions, (ii) the use of two separate IMRT fields for a given gantry angle, and (iii) restricting the overall maximum field size used. The overall process has allowed implementation of an in-house protocol for IMRT use on an initial clinical site. Results of the verification measurements for the first ten patients treated at this center reveal an average maximum dose per IMRT field delivered of 71.0 cGy, with a mean local deviation from the planned dose of -1.2 cGy, and a standard deviation of 2.4 cGy.


Assuntos
Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/instrumentação , Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Neoplasias Nasofaríngeas/radioterapia , Radioterapia (Especialidade)/instrumentação , Radioterapia (Especialidade)/métodos , Dosagem Radioterapêutica , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/métodos
4.
Med Phys ; 27(10): 2380-4, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11099208

RESUMO

Tomotherapy presents an evolutionary modality that holds forth the promise of better dose conformation to tumor volumes with a concomitant reduction in radiation-induced damage to surrounding normal structures. This delivery technique also presents a new set of radiation protection challenges that impact upon the design of the shielding vault required to house such a unit. A formalism is presented to determine the requisite amounts of shielding for both the primary beam and leakage radiation associated with a generic tomotherapy unit. A comparison is made with the shielding requirements for a conventional linear accelerator operated in a standard manner. Substantial differences in the amount of both primary and secondary shielding are indicated. A tomotherapy primary beam shield is both reduced in width by a factor of almost 10 and increased in thickness by more than a tenth value layer in comparison to a conventional accelerator. Furthermore, the secondary shielding requirements are enhanced by more than two tenth value layers with respect to conventional shielding demands.


Assuntos
Proteção Radiológica/métodos , Radioterapia Conformacional/métodos , Humanos , Aceleradores de Partículas , Proteção Radiológica/instrumentação , Proteção Radiológica/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/estatística & dados numéricos , Espalhamento de Radiação
5.
Med Phys ; 25(10): 1837-44, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9800689

RESUMO

A commercially available treatment planning system contains several functions that allow for the automation of missing tissue and optimized compensators, where the former retracts the bolus toward the source, and the latter attempts, by iteration, to establish a uniform dose at some user defined depth. The intent of this paper is to report on the compensators designed by the system and to compare them to those devised through conventional techniques. It is demonstrated that the system can model the dosimetric effects of compensators with a high degree of accuracy; measured and predicted doses agree to within 3%. Optimized compensators show slightly improved dose uniformity over thickness reduced compensators. Both show significantly improved uniformity over compensators that simply retract the bolus geometry. In cases where internal inhomogeneities exist, however, the dose uniformity from the optimized compensators vary by as much as 6% at the target depth. These deviations are comparable to the errors of the inhomogeneity algorithm itself. The pathlength reduction technique has been applied to both missing tissue and inhomogeneity compensation, and it has been found that for inhomogeneity compensation, the pathlength reduced compensators produce more uniform distributions than those generated by the optimization algorithm.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Fenômenos Biofísicos , Biofísica , Estudos de Avaliação como Assunto , Humanos , Modelos Teóricos , Neoplasias/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Alta Energia/métodos , Radioterapia de Alta Energia/estatística & dados numéricos
6.
Med Dosim ; 17(1): 29-34, 1992 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1558644

RESUMO

Quality Assurance (QA) on computerized treatment planning systems is currently an area that requires considerable attention. To meet this objective a simple yet effective quality assurance program has been developed and implemented at the Cross Cancer Institute.


Assuntos
Institutos de Câncer/normas , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador/normas , Alberta , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA