Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Biol ; : e14265, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616727

RESUMO

The fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation. Relations among pathogen, host, and environment are complex, and individuals, populations, and species respond to the fungal pathogen in different ways. For example, the Nearctic Myotis lucifugus responds to infection by mounting a robust immune response, leading to immunopathology often contributing to mortality. In contrast, the Palearctic M. myotis shows no significant immunological response to infection. This lack of a strong response, resulting from the long coevolution between the hosts and the pathogen in the pathogen's native range, likely contributes to survival in tolerant species. After more than 15 years since the initial introduction of the fungus to North America, some of the affected populations are showing signs of recovery, suggesting that the fungus, hosts, or both are undergoing processes that may eventually lead to coexistence. The suggested or implemented management methods of the disease in North America have encompassed, for example, the use of probiotics and fungicides, vaccinations, and modifying the environmental conditions of the hibernation sites to limit the growth of the pathogen, intensity of infection, or the hosts' responses to it. Based on current knowledge from Eurasia, policy makers and conservation managers should refrain from disrupting the ongoing evolutionary processes and adopt a holistic approach to managing the epizootic.


Vista paleártica de una enfermedad fúngica de murciélagos Resumen La enfermedad fúngica que produce el síndrome de nariz blanca en murciélagos en hibernación en Norte América ha resultado en declinaciones poblacionales dramáticas en las especies afectadas desde la introducción del agente causante, Pseudogymnoascus destructans. El hongo es nativo del Paleártico, donde también infecta a varias especies de murciélagos; sin embargo, raramente causa patología severa o la muerte del hospedero. Pseudogymnoascus destructans infecta a los murciélagos durante la hibernación invadiendo y digiriendo el tejido de la piel, lo que resulta en la disrupción de los patrones de torpor y la consecuente emaciación. Las relaciones entre el patógeno, el huésped y el ambiente son complejas, y los individuos, las especies y poblaciones responden al patógeno fúngico de distintas maneras. Por ejemplo, Myotis lucifugus, especie del Neártico, responde a la infección montando una respuesta inmune robusta, produciendo una inmunopatología que a menudo contribuye a la mortalidad. En contraste, M. myotis del Paleártico no presenta respuesta inmunológica significativa a la infección. La falta de una fuerte respuesta, resultado de la larga coevolución entre hospederos y el patógeno en el rango nativo de distribución del patógeno, probablemente contribuye a la supervivencia en especies tolerantes. Después de más de 15 años desde la introducción del hongo en Norte América, algunas de las poblaciones afectadas están mostrando señales recuperación, lo que sugiere que el hongo, hospederos, o ambos, están pasando por procesos que eventualmente pueden conducir a la coexistencia. Los métodos de manejo de la enfermedad sugeridos o implementados en Norte América han abarcado, por ejemplo, el uso de probióticos y fungicidas, vacunaciones y modificación de las condiciones ambientales de los sitios de hibernación para limitar el crecimiento del patógeno, la intensidad de la infección o las respuestas de los hospederos. Con base en conocimiento actual de Eurasia, los formuladores de políticas y los manejadores de la conservación deberían abstenerse de alterar los procesos evolutivos en curso y adoptar un enfoque holístico para gestionar la epizootia.

2.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179513

RESUMO

White-nose syndrome (WNS) is a fungal disease responsible for decimating many bat populations in North America. Pseudogymnoascus destructans (Pd), the psychrophilic fungus responsible for WNS, prospers in the winter habitat of many hibernating bat species. The immune response that Pd elicits in bats is not yet fully understood; antibodies are produced in response to infection by Pd, but they may not be protective and indeed may be harmful. To understand how bats respond to infection during hibernation, we studied the effect of Pd inoculation on the survival and gene expression of captive hibernating Myotis lucifugus with varying pre-hibernation antifungal antibody titres. We investigated gene expression through the transcription of selected cytokine genes (Il6, Il17a, Il1b, Il4 and Ifng) associated with inflammatory, Th1, Th2 and Th17 immune responses in wing tissue and lymph nodes. We found no difference in survival between bats with low and high anti-Pd titres, although anti-Pd antibody production during hibernation differed significantly between infected and uninfected bats. Transcription of Il6 and Il17a was higher in the lymph nodes of infected bats compared with uninfected bats. Increased transcription of these cytokines in the lymph node suggests that a pro-inflammatory immune response to WNS is not restricted to infected tissues and occurs during hibernation. The resulting Th17 response may be protective in euthermic bats, but because it may disrupt torpor, it could be detrimental during hibernation.


Assuntos
Quirópteros/imunologia , Hibernação/imunologia , Micoses/veterinária , Animais , Ascomicetos , Quirópteros/microbiologia , Citocinas/imunologia , Micoses/imunologia , América do Norte , Células Th17/imunologia
3.
Am J Transplant ; 13(3): 611-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23331973

RESUMO

Calcineurin-inhibitor refractory bronchiolitis obliterans (BO) represents the leading cause of late graft failure after lung transplantation. T helper (Th)2 and Th17 lymphocytes have been associated with BO development. Taking advantage of a fully allogeneic trachea transplantation model in mice, we addressed the pathogenicity of Th cells in obliterative airway disease (OAD) occurring in cyclosporine A (CsA)-treated recipients. We found that CsA prevented CD8(+) T cell infiltration into the graft and downregulated the Th1 response but affected neither Th2 nor Th17 responses in vivo. In secondary mixed lymphocyte cultures, CsA dramatically decreased donor-specific IFN-γ production, enhanced IL-17 production and did not affect IL-13. As CD4(+) depletion efficiently prevented OAD in CsA-treated recipients, we further explored the role of Th2 and Th17 immunity in vivo. Although IL-4 and IL-17 deficient untreated mice developed an OAD comparable to wild-type recipients, a single cytokine deficiency afforded significant protection in CsA-treated recipients. In conclusion, CsA treatment unbalances T helper alloreactivity and favors Th2 and Th17 as coexisting pathways mediating chronic rejection of heterotopic tracheal allografts.


Assuntos
Bronquiolite Obliterante/induzido quimicamente , Ciclosporina/toxicidade , Rejeição de Enxerto/induzido quimicamente , Interleucina-17/fisiologia , Transplante de Pulmão/efeitos adversos , Células Th2/imunologia , Traqueia/transplante , Animais , Western Blotting , Bronquiolite Obliterante/imunologia , Bronquiolite Obliterante/patologia , Citocinas/metabolismo , Citometria de Fluxo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Técnicas Imunoenzimáticas , Imunossupressores/toxicidade , Interferon gama/fisiologia , Interleucina-4/fisiologia , Teste de Cultura Mista de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Traqueia/efeitos dos fármacos , Traqueia/imunologia , Transplante Heterotópico , Transplante Homólogo
4.
Am J Transplant ; 12(9): 2313-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22759373

RESUMO

Allograft acceptance and tolerance can be achieved by different approaches including inhibition of effector T cell responses through CD28-dependent costimulatory blockade and induction of peripheral regulatory T cells (Tregs). The observation that Tregs rely upon CD28-dependent signals for development and peripheral expansion, raises the intriguing possibility of a counterproductive consequence of CTLA4-Ig administration on tolerance induction. We have investigated the possible negative effect of CTLA4-Ig on Treg-mediated tolerance induction using a mouse model of single MHC class II-mismatched skin grafts in which long-term acceptance was achieved by short-term administration of IL-2/anti-IL-2 complex. CTLA4-Ig treatment was found to abolish Treg-dependent acceptance in this model, restoring skin allograft rejection and Th1 alloreactivity. CTLA4-Ig inhibited IL-2-driven Treg expansion, and prevented in particular the occurrence of ICOS(+) Tregs endowed with potent suppressive capacities. Restoring CD28 signaling was sufficient to counteract the deleterious effect of CTLA4-Ig on Treg expansion and functionality, in keeping with the hypothesis that costimulatory blockade inhibits Treg expansion and function by limiting the delivery of essential CD28-dependent signals. Inhibition of regulatory T cell function should therefore be taken into account when designing tolerance protocols based on costimulatory blockade.


Assuntos
Rejeição de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunoconjugados/administração & dosagem , Interleucina-2/administração & dosagem , Linfócitos T Reguladores/imunologia , Abatacepte , Animais , Antígenos CD28/metabolismo , Teste de Histocompatibilidade , Interleucina-2/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos
5.
Mol Biol Cell ; 11(10): 3661-73, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11029062

RESUMO

Characterization of defects in a variant subline of RBL mast cells has revealed a biochemical event proximal to IgE receptor (Fc epsilon RI)-stimulated tyrosine phosphorylation that is required for multiple functional responses. This cell line, designated B6A4C1, is deficient in both Fc epsilon RI-mediated degranulation and biosynthesis of several lipid raft components. Agents that bypass receptor-mediated Ca(2+) influx stimulate strong degranulation responses in these variant cells. Cross-linking of IgE-Fc epsilon RI on these cells stimulates robust tyrosine phosphorylation but fails to mobilize a sustained Ca(2+) response. Fc epsilon RI-mediated inositol phosphate production is not detectable in these cells, and failure of adenosine receptors to mobilize Ca(2+) suggests a general deficiency in stimulated phospholipase C activity. Antigen stimulation of phospholipases A(2) and D is also defective. Infection of B6A4C1 cells with vaccinia virus constructs expressing constitutively active Rho family members Cdc42 and Rac restores antigen-stimulated degranulation, and active Cdc42 (but not active Rac) restores ganglioside and GPI expression. The results support the hypothesis that activation of Cdc42 and/or Rac is critical for Fc epsilon RI-mediated signaling that leads to Ca(2+) mobilization and degranulation. Furthermore, they suggest that Cdc42 plays an important role in the biosynthesis and expression of certain components of lipid rafts.


Assuntos
Metabolismo dos Lipídeos , Mastócitos/fisiologia , Receptores de IgE/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/ultraestrutura , Ativação Enzimática , Immunoblotting , Cinética , Leucemia Basofílica Aguda , Mastócitos/citologia , Fosforilação , Fosfotirosina/análise , Fosfotirosina/metabolismo , Ratos , Transdução de Sinais
6.
Biophys J ; 77(2): 925-33, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10423437

RESUMO

The dynamic structure of detergent-resistant membranes (DRMs) isolated from RBL-2H3 cells was characterized using two different acyl chain spin-labeled phospholipids (5PC and 16PC), a headgroup labeled sphingomyelin (SM) analog (SD-Tempo) and a spin-labeled cholestane (CSL). It was shown, by comparison to dispersions of SM, dipalmitoylphosphatidylcholine (DPPC), and DPPC/cholesterol of molar ratio 1, that DRM contains a substantial amount of liquid ordered phase: 1) The rotational diffusion rates (R( perpendicular)) of 16PC in DRM between -5 degrees C and 45 degrees C are nearly the same as those in molar ratio DPPC/Chol = 1 dispersions, and they are substantially greater than R( perpendicular) in pure DPPC dispersions in the gel phase studied above 20 degrees C; 2) The order parameters (S) of 16PC in DRM at temperatures above 4 degrees C are comparable to those in DPPC/Chol = 1 dispersions, but are greater than those in DPPC dispersions in both the gel and liquid crystalline phases. 3) Similarly, R( perpendicular) for 5PC and CSL in DRM is greater than in pure SM dispersions in the gel phase, and S for these labels in DRM is greater than in the SM dispersions in both the gel and liquid crystalline phases. 4) R( perpendicular) of SD-Tempo in DRM is greater than in dispersions of SM in both gel and liquid phases, consistent with the liquid-like mobility in the acyl chain region in DRM. However, S of SD-Tempo in DRM is substantially less than that of this spin label in SM in gel and liquid crystalline phases (in absolute values), indicating that the headgroup region in DRMs is less ordered than in pure SM. These results support the hypothesis that plasma membranes contain DRM domains with a liquid ordered phase that may coexist with a liquid crystalline phase. There also appears to be a coexisting region in DRMs in which the chain labels 16PC and 5PC are found to cluster. We suggest that other biological membranes containing high concentrations of cholesterol also contain a liquid ordered phase.


Assuntos
Lipídeos de Membrana/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Linhagem Celular , Colesterol/química , Detergentes , Espectroscopia de Ressonância de Spin Eletrônica , Géis , Ratos , Esfingomielinas/química , Marcadores de Spin
7.
J Biol Chem ; 274(3): 1753-8, 1999 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9880557

RESUMO

We recently showed that aggregation of the high affinity IgE receptor on mast cells, FcepsilonRI, causes this immunoreceptor to associate rapidly with specialized regions of the plasma membrane, where it is phosphorylated by the tyrosine kinase Lyn. In this study, we further characterize the detergent sensitivity of this association on rat basophilic leukemia-2H3 mast cells, and we compare the capacity of structural variants of FcepsilonRI and other receptors to undergo this association. We show that this interaction is not mediated by the beta subunit of the receptor or the cytoplasmic tail of the gamma subunit, both of which are involved in signaling. Using chimeric receptor constructs, we found that the extracellular segment of the FcepsilonRI alpha subunit was not sufficient to mediate this association, implicating FcepsilonRI alpha and/or gamma transmembrane segments. To determine the specificity of this interaction, we compared the association of several other receptors. Interleukin-1 type I receptors on Chinese hamster ovary cells and alpha4 integrins on rat basophilic leukemia cells showed little or no association with isolated membrane domains, both before and after aggregation on the cells. In contrast, interleukin-2 receptor alpha (Tac) on Chinese hamster ovary cells exhibited aggregation-dependent membrane domain association similar to FcepsilonRI. These results provide insights into the structural basis and selectivity of lipid-mediated interactions between certain transmembrane receptors and detergent-resistant membranes.


Assuntos
Membrana Celular/metabolismo , Receptores de IgE/metabolismo , Animais , Antígenos CD/metabolismo , Células CHO , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Centrifugação com Gradiente de Concentração , Cricetinae , Detergentes/farmacologia , Integrina alfa4 , Mastócitos/imunologia , Camundongos , Microscopia Eletrônica , Octoxinol/farmacologia , Conformação Proteica , Ratos , Receptores de IgE/química , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-2/metabolismo , Células Tumorais Cultivadas , Quinases da Família src/metabolismo
8.
J Biol Chem ; 272(7): 4276-80, 1997 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-9020144

RESUMO

The earliest known step in the activation of the high affinity IgE receptor, FcepsilonRI, is the tyrosine phosphorylation of its beta and gamma subunits by the Src family tyrosine kinase, Lyn. We report here that aggregation-dependent association of FcepsilonRI with specialized regions of the plasma membrane precedes its tyrosine phosphorylation and appears necessary for this event. Tyrosine phosphorylation of beta and gamma occurs in intact cells only for FcepsilonRI that associate with these detergent-resistant membrane domains, which are enriched in active Lyn. Furthermore, efficient in vitro tyrosine phosphorylation of FcepsilonRI subunits occurs only for those associated with isolated domains. This association and in vitro phosphorylation are highly sensitive to low concentrations of detergent, suggesting that lipid-mediated interactions with Lyn are important in FcepsilonRI activation. Participation of membrane domains accounts for previously unexplained aspects of FcepsilonRI-mediated signaling and may be relevant to signaling by other multichain immune receptors.


Assuntos
Proteínas de Membrana/metabolismo , Receptores de IgE/metabolismo , Linhagem Celular , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Tirosina/metabolismo , Quinases da Família src/metabolismo
9.
Proc Natl Acad Sci U S A ; 92(20): 9201-5, 1995 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-7568101

RESUMO

Detergent-resistant plasma membrane structures, such as caveolae, have been implicated in signalling, transport, and vesicle trafficking functions. Using sucrose gradient ultracentrifugation, we have isolated low-density, Triton X-100-insoluble membrane domains from RBL-2H3 mucosal mast cells that contain several markers common to caveolae, including a src-family tyrosine kinase, p53/56lyn. Aggregation of Fc epsilon RI, the high-affinity IgE receptor, causes a significant increase in the amount of p53/56lyn associated with these low-density membrane domains. Under our standard conditions for lysis, IgE-Fc epsilon RI fractionates with the majority of the solubilized proteins, whereas aggregated receptor complexes are found at a higher density in the gradient. Stimulated translocation of p53/56lyn is accompanied by increased tyrosine phosphorylation of several proteins in the low-density membrane domains as well as enhanced in vitro tyrosine kinase activity toward these proteins and an exogenous substrate. With a lower detergent-to-cell ratio during lysis, significant Fc epsilon RI remains associated with these membrane domains, consistent with the ability to coimmunoprecipitate tyrosine kinase activity with Fc epsilon RI under similar lysis conditions [Pribluda, V. S., Pribluda, C. & Metzger, H. (1994) Proc. Natl. Acad. Sci. USA 91, 11246-11250]. These results indicate that specialized membrane domains may be directly involved in the coupling of receptor aggregation to the activation of signaling events.


Assuntos
Detergentes/farmacologia , Proteínas Tirosina Quinases/metabolismo , Receptores de IgE/metabolismo , Transdução de Sinais/imunologia , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Centrifugação com Gradiente de Concentração , Resistência a Medicamentos , Immunoblotting , Leucemia Basofílica Aguda , Fosfotirosina/análise , Proteínas Tirosina Quinases/análise , Ratos , Receptores de IgE/imunologia , Receptores de IgE/isolamento & purificação , Células Tumorais Cultivadas
10.
J Biol Chem ; 267(36): 26110-20, 1992 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-1464622

RESUMO

Coagulation factor X is activated by the extrinsic Xase complex composed of factor VIIa associated with the integral membrane protein tissue factor. The kinetics of human factor X activation was studied following reconstitution of this reaction system using purified human proteins and synthetic phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine (PCPS) or phosphatidylcholine alone (PC). Factor X activation was evaluated by discontinuous measurements of the amidolytic activity of the product, factor Xa, or continuously monitored using the fluorescent serine protease inhibitor 4-aminobenzamidine. The results of both techniques were verified by direct physical measurements of zymogen activation using SDS-polyacrylamide gel electrophoresis. The rate of factor X activation with PC vesicles was less than 5% of that observed with PCPS vesicles. Since factor X does not bind to vesicles containing only PC, these data suggested an important role for the substrate-membrane interaction in the catalytic cycle. The importance of the substrate-membrane interaction in the activation process was investigated by using membrane-binding proteins to compete with the substrate for combining sites on PCPS vesicles. Prothrombin fragment 1 was an inhibitor of factor X activation. The dependence of inhibition by fragment 1 on PCPS and factor X was consistent with a significant reduction in initial velocity due to the displacement of factor X from the membrane surface. The inhibition data also suggested that the membrane-bound pool of factor X was the preferred substrate for the human extrinsic Xase complex. The influence of PCPS concentrations on the rate of factor X activation was systematically investigated. Increasing concentrations of PCPS resulted in a modest change in the Km,app and a dramatic change in the Vmax,app for the reaction. The initial velocity data could be globally analyzed according to the preferential utilization of membrane-bound factor X with the intrinsic kinetic constants: Km approximately equal to 1 microM and kcat = 37 s-1 at saturating PCPS. In addition, the equilibrium parameters for the factor X-membrane interaction inferred from these studies were in excellent agreement with the directly determined values. Collectively, the data suggest that the substrate-membrane interaction must precede catalysis for the efficient activation of human factor X by the extrinsic Xase complex.


Assuntos
Fator X/metabolismo , Lipossomos , Fosfolipídeos/farmacologia , Tromboplastina/metabolismo , Animais , Bovinos , Fator VIIa/metabolismo , Fator Va/metabolismo , Humanos , Cinética , Matemática , Proteínas de Membrana/metabolismo , Membranas Artificiais , Modelos Teóricos , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/farmacologia , Fosfatidilserinas/farmacologia , Precursores de Proteínas/metabolismo , Protrombina/metabolismo , Espalhamento de Radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...