Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(13): 1731-1734, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38240142

RESUMO

New phenyl and stilbene-bridged polyoxometalate (POM) charge-transfer chromophores with diphenylamino donor groups produce, respectively, the highest intrinsic and absolute quadratic hyperpolarisabilities measured for such species. The ß0,zzz obtained for the phenyl bridge - at 180 × 10-30 esu - is remarkable for a short conjugated system while changing to the stilbene (260 × 10-30 esu) produces a substantial increase in non-linearity for a minimal red-shift in the absorption profile. Together with TD-DFT calculations, the results show that maximising conjugation in the π-bridge is vital to high performance in such "POMophores".

2.
Angew Chem Int Ed Engl ; 62(5): e202215537, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36448963

RESUMO

Electrochemically switched 2nd order non-linear optical responses have been demonstrated for the first time in polyoxometalates (POMs), with an arylimido-derivative showing a leading combination of high on/off contrast (94 %), high visible transparency, and cyclability. Spectro-electrochemical and TD-DFT studies indicate that the switch-off results from weakened charge transfer (CT) character of the electronic transitions in the reduced state. This represents the first study of an imido-POM reduced state, and demonstrates the potential of POM hybrids as electrochemically activated molecular switches.

3.
Autophagy ; 18(1): 40-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726628

RESUMO

TEX264 (testes expressed gene 264) is a single-pass transmembrane protein, consisting of an N-terminal hydrophobic region, a gyrase inhibitory (GyrI)-like domain, and a loosely structured C terminus. TEX264 was first identified as an endoplasmic reticulum (ER)-resident Atg8-family-binding protein that mediates the degradation of portions of the ER during starvation (i.e., reticulophagy). More recently, TEX264 was identified as a cofactor of VCP/p97 ATPase that promotes the repair of covalently trapped TOP1 (DNA topoisomerase 1)-DNA crosslinks. This review summarizes the current knowledge of TEX264 as a protein with roles in both autophagy and DNA repair and provides an evolutionary and structural analysis of GyrI proteins. Based on our phylogenetic analysis, we provide evidence that TEX264 is a member of a large superfamily of GyrI-like proteins that evolved in bacteria and are present in metazoans, including invertebrates and chordates.Abbreviations: Atg8: autophagy related 8; Atg39: autophagy related 39; Cdc48: cell division cycle 48; CGAS: cyclic GMP-AMP synthase; DPC: DNA-protein crosslinks; DSB: DNA double-strand break; ER: endoplasmic reticulum; GyrI: gyrase inhibitory domain; LRR: leucine-rich repeat; MAFFT: multiple alignment using fast Fourier transform; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; STUBL: SUMO targeted ubiquitin ligase; SUMO: small ubiquitin-like modifier; TEX264: testis expressed gene 264; TOP1cc: topoisomerase 1-cleavage complex; UBZ: ubiquitin binding Zn finger domain; VCP: valosin containing protein.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , DNA , Reparo do DNA , Estresse do Retículo Endoplasmático/genética , Filogenia , Ubiquitina/genética
4.
Phys Chem Chem Phys ; 23(20): 11807-11817, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33987634

RESUMO

A family comprising seven arylimido-polyoxometalate (POM) hybrid chromophores (three of which are new), with linear dipolar, C2v and linear centrosymmetric geometries have been synthesised and studied by electronic absorption spectroscopy, electrochemistry, Z-scans (two photon absorption, TPA) and computation (DFT/TD-DFT). These reveal that POM acceptor units are an effective basis for TPA materials: the centrosymmetric bis-POM chromophores produce significant cross sections (δ up to 82 GM) from a single aryl bridge, a similar performance to larger dipolar π-systems combining carbazole or diphenylamino donors with the imido-POM acceptor. DFT/TD-DFT calculations indicate strong communication between POM and organic components is responsible for the linear and non-linear optical behaviour of these compounds, while electrochemical measurements reveal class II mixed valence behaviour resulting from an interplay of through-bond and through-space effects.

5.
J Am Chem Soc ; 142(32): 13856-13866, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786817

RESUMO

Cytosine-rich DNA can fold into secondary structures known as i-motifs. Mounting experimental evidence suggests that these non-canonical nucleic acid structures form in vivo and play biological roles. However, to date, there are no optical probes able to identify i-motif in the presence of other types of DNA. Herein, we report for the first time the interactions between the three isomers of [Ru(bqp)2]2+ with i-motif, G-quadruplex, and double-stranded DNA. Each isomer has vastly different light-switching properties: mer is "on", trans is "off", and cis switches from "off" to "on" in the presence of all types of DNA. Using emission lifetime measurements, we show the potential of cis to light up and identify i-motif, even when other DNA structures are present using a sequence from the promoter region of the death-associated protein (DAP). Moreover, separated cis enantiomers revealed Λ-cis to have a preference for the i-motif, whereas Δ-cis has a preference for double-helical DNA. Finally, we propose a previously unreported light-switching mechanism that originates from steric compression and electronic effects in a tight binding site, as opposed to solvent exclusion. Our work suggests that many published non-emissive Ru complexes could potentially switch on in the presence biological targets with suitable binding sites, opening up a plethora of opportunity in the detection of biological molecules.


Assuntos
Complexos de Coordenação/química , DNA/química , Rutênio/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Estrutura Molecular , Motivos de Nucleotídeos , Solventes/química
6.
Nat Commun ; 11(1): 1274, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152270

RESUMO

Eukaryotic topoisomerase 1 (TOP1) regulates DNA topology to ensure efficient DNA replication and transcription. TOP1 is also a major driver of endogenous genome instability, particularly when its catalytic intermediate-a covalent TOP1-DNA adduct known as a TOP1 cleavage complex (TOP1cc)-is stabilised. TOP1ccs are highly cytotoxic and a failure to resolve them underlies the pathology of neurological disorders but is also exploited in cancer therapy where TOP1ccs are the target of widely used frontline anti-cancer drugs. A critical enzyme for TOP1cc resolution is the tyrosyl-DNA phosphodiesterase (TDP1), which hydrolyses the bond that links a tyrosine in the active site of TOP1 to a 3' phosphate group on a single-stranded (ss)DNA break. However, TDP1 can only process small peptide fragments from ssDNA ends, raising the question of how the ~90 kDa TOP1 protein is processed upstream of TDP1. Here we find that TEX264 fulfils this role by forming a complex with the p97 ATPase and the SPRTN metalloprotease. We show that TEX264 recognises both unmodified and SUMO1-modifed TOP1 and initiates TOP1cc repair by recruiting p97 and SPRTN. TEX264 localises to the nuclear periphery, associates with DNA replication forks, and counteracts TOP1ccs during DNA replication. Altogether, our study elucidates the existence of a specialised repair complex required for upstream proteolysis of TOP1ccs and their subsequent resolution.


Assuntos
Adenosina Trifosfatases/metabolismo , Adutos de DNA/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Reparo do DNA , Replicação do DNA , Epistasia Genética , Humanos , Proteínas de Membrana/química , Diester Fosfórico Hidrolases/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação
7.
EMBO J ; 38(21): e102361, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31613024

RESUMO

The E3 ubiquitin ligase RNF8 (RING finger protein 8) is a pivotal enzyme for DNA repair. However, RNF8 hyper-accumulation is tumour-promoting and positively correlates with genome instability, cancer cell invasion, metastasis and poor patient prognosis. Very little is known about the mechanisms regulating RNF8 homeostasis to preserve genome stability. Here, we identify the cellular machinery, composed of the p97/VCP ubiquitin-dependent unfoldase/segregase and the Ataxin 3 (ATX3) deubiquitinase, which together form a physical and functional complex with RNF8 to regulate its proteasome-dependent homeostasis under physiological conditions. Under genotoxic stress, when RNF8 is rapidly recruited to sites of DNA lesions, the p97-ATX3 machinery stimulates the extraction of RNF8 from chromatin to balance DNA repair pathway choice and promote cell survival after ionising radiation (IR). Inactivation of the p97-ATX3 complex affects the non-homologous end joining DNA repair pathway and hypersensitises human cancer cells to IR. We propose that the p97-ATX3 complex is the essential machinery for regulation of RNF8 homeostasis under both physiological and genotoxic conditions and that targeting ATX3 may be a promising strategy to radio-sensitise BRCA-deficient cancers.


Assuntos
Adenosina Trifosfatases/metabolismo , Ataxina-3/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Homeostase , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatases/genética , Ataxina-3/genética , Sobrevivência Celular , Cromatina/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
Nat Commun ; 10(1): 3142, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316063

RESUMO

The SPRTN metalloprotease is essential for DNA-protein crosslink (DPC) repair and DNA replication in vertebrate cells. Cells deficient in SPRTN protease exhibit DPC-induced replication stress and genome instability, manifesting as premature ageing and liver cancer. Here, we provide a body of evidence suggesting that SPRTN activates the ATR-CHK1 phosphorylation signalling cascade during physiological DNA replication by proteolysis-dependent eviction of CHK1 from replicative chromatin. During this process, SPRTN proteolyses the C-terminal/inhibitory part of CHK1, liberating N-terminal CHK1 kinase active fragments. Simultaneously, CHK1 full length and its N-terminal fragments phosphorylate SPRTN at the C-terminal regulatory domain, which stimulates SPRTN recruitment to chromatin to promote unperturbed DNA replication fork progression and DPC repair. Our data suggest that a SPRTN-CHK1 cross-activation loop plays a part in DNA replication and protection from DNA replication stress. Finally, our results with purified components of this pathway further support the proposed model of a SPRTN-CHK1 cross-activation loop.


Assuntos
Quinase 1 do Ponto de Checagem/fisiologia , Proteínas de Ligação a DNA/fisiologia , Modelos Genéticos , Animais , Quinase 1 do Ponto de Checagem/metabolismo , Quebras de DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Fosforilação , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Dalton Trans ; 48(26): 9576-9580, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31184345

RESUMO

Two new cobalt bis-iminopyridines, [Co(DDP)(H2O)2](NO3)2 (1, DDP = cis-[1,3-bis(2-pyridinylenamine)] cyclohexane) and [Co(cis-DDOP)(NO3)](NO3) (2, cis-DDOP = cis-3,5-bis[(2-Pyridinyleneamin]-trans-hydroxycyclohexane) electrocatalyse the 4-proton, 4-electron reduction of acetonitrile to ethylamine. For 1, this reduction occurs in preference to reduction of protons to H2. A coordinating hydroxyl proton relay in 2 reduces the yield of ethylamine and biases the catalytic system back towards H2.

10.
DNA Repair (Amst) ; 71: 198-204, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30170832

RESUMO

DNA-protein crosslinks (DPCs) are a specific type of DNA lesion consisting of a protein covalently and irreversibly bound to DNA, which arise after exposure to physical and chemical crosslinking agents. DPCs can be bulky and thereby pose a barrier to DNA replication and transcription. The persistence of DPCs during S phase causes DNA replication stress and genome instability. The toxicity of DPCs is exploited in cancer therapy: many common chemotherapeutics kill cancer cells by inducing DPC formation. Recent work from several laboratories discovered a specialized repair pathway for DPCs, namely DPC proteolysis (DPCP) repair. DPCP repair is carried out by replication-coupled DNA-dependent metalloproteases: Wss1 in yeast and SPRTN in metazoans. Mutations in SPRTN cause premature ageing and liver cancer in humans and mice; thus, defective DPC repair has great clinical ramifications. In the present review, we will revise the current knowledge on the mechanisms of DPCP repair and on the regulation of DPC protease activity, while highlighting the most significant unresolved questions in the field. Finally, we will discuss the impact of faulty DPC repair on disease and cancer therapy.


Assuntos
Adutos de DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Animais , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/toxicidade , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos da radiação , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Eucariotos/metabolismo , Eucariotos/efeitos da radiação , Humanos , Proteólise , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Dalton Trans ; 47(31): 10415-10419, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29947391

RESUMO

A new aryl-imido polyoxometalate non-linear optical chromophore (POMophore) with a diphenylamino donor group attains the highest ßzzz, 0 value (196 × 10-30 esu by Hyper-Rayleigh Scattering, HRS), and best transparency/non-linearity trade off yet for such materials. Stark spectroscopic and DFT investigation of this compound, plus NMe2 and carbazole analogues, show that its high performance results from a combination of strongly dipolar electronic transitions, and strong electronic communication across the π-system.

12.
Inorg Chem ; 56(17): 10181-10194, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28809116

RESUMO

Ten organoimido polyoxometalate (POM)-based chromophores have been synthesized and studied by hyper-Rayleigh scattering (HRS), Stark and Resonance Raman spectroscopies, and density functional theory (DFT) calculations. HRS ß0 values for chromophores with resonance electron donors are significant (up to 139 × 10-30 esu, ∼5 times greater than that of the DAS+ cation), but systems with no donor, or the -NO2 acceptor show no activity, in some cases, despite large DFT-predicted ß-values. In active systems with short (phenyl) π-bridges, ß0 values comfortably exceed that of the purely organic structural analogue N,N-dimethyl-4-nitroaniline (DMPNA), and intrinsic ß-values, ß0/N3/2 (where N is the number of bridge π-electrons) thus appear to break empirical performance limits (ß0/N3/2 vs λmax) for planar organic systems. However, ß0 values obtained for extended systems with a diphenylacetylene bridge are comparable to or lower than that of their nitro analogue, N,N-dimethyl-4-[(4-nitrophenyl)ethynyl]-aniline (DMNPEA). Resonance Raman spectroscopy confirms the involvement of the POM in the electronic transitions, whether donor groups are present or not, but Stark spectroscopy indicates that, in their absence, the transitions have little dipolar character (hence, NLO inactive), consistent with DFT-calculated frontier orbitals, which extend over both POM and organic group. Stark and DFT also suggest that ß is enhanced in the short compounds because the extension of charge transfer (CT) onto the POM increases changes in the excited-state dipole moment. With extended π-systems, this effect does not increase CT distances, relative to a -NO2 acceptor, so ß0 values do not exceed that of DMNPEA. Overall, our results show that (i) the organoimido-POM unit is an efficient acceptor for second-order NLO, but an ineffective donor; (ii) the nature of electronic transitions in arylimido-POMs is strongly influenced by the substituents of the aryl group; and (iii) organoimido-POMs outperform organic acceptors with short π-bridges, but lose their advantage with extended π-conjugation.

13.
Phys Chem Chem Phys ; 19(29): 18831-18835, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28707686

RESUMO

Lindqvist polyoxometalate (POM) additives increase VOC in p-type DSSCs by up to 140%, yielding substantial efficiency gains for poorly matched dyes and redox mediators. For better dye/electrolyte combinations, these gains are typically outweighed by losses in JSC. Charge lifetime and transient IR measurements show that this is due to retardation of both recombination and electron transfer to the mediator, and a positive shift in the NiO valence band edge. The POMs also show their own, limited sensitizing effect.

14.
Mol Cell ; 64(4): 704-719, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27871366

RESUMO

The cytotoxicity of DNA-protein crosslinks (DPCs) is largely ascribed to their ability to block the progression of DNA replication. DPCs frequently occur in cells, either as a consequence of metabolism or exogenous agents, but the mechanism of DPC repair is not completely understood. Here, we characterize SPRTN as a specialized DNA-dependent and DNA replication-coupled metalloprotease for DPC repair. SPRTN cleaves various DNA binding substrates during S-phase progression and thus protects proliferative cells from DPC toxicity. Ruijs-Aalfs syndrome (RJALS) patient cells with monogenic and biallelic mutations in SPRTN are hypersensitive to DPC-inducing agents due to a defect in DNA replication fork progression and the inability to eliminate DPCs. We propose that SPRTN protease represents a specialized DNA replication-coupled DPC repair pathway essential for DNA replication progression and genome stability. Defective SPRTN-dependent clearance of DPCs is the molecular mechanism underlying RJALS, and DPCs are contributing to accelerated aging and cancer.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/química , Instabilidade Genômica , Sequência de Aminoácidos , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , DNA/genética , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Etoposídeo/química , Formaldeído/química , Expressão Gênica , Humanos , Cinética , Mutação , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Síndrome , Raios Ultravioleta
15.
Inorg Chem ; 55(9): 4308-19, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27082443

RESUMO

A series of hetero-bimetallic transition metal-substituted polyoxometalates (TMSPs) were synthesized based on the Co(II)-centered ligand [Co(II)W11O39](10-). The eight complex series, [Co(II)(M(x)OHy)W11O39]((12-x-y)-) (M(x)OHy = V(IV)O, Cr(III)(OH2), Mn(II)(OH2), Fe(III)(OH2), Co(II)(OH2), Ni(II)(OH2), Cu(II)(OH2), Zn(II)(OH2)), of which six are reported for the first time, was synthesized starting from [Co(III)W11O39](9-) and studied using spectroscopic, electrochemical, and computational techniques to evaluate the influence of substituted transition metals on the photodynamics of the metal-to-polyoxometalate charge transfer (MPCT) transition. The bimetallic complexes all show higher visible light absorption than the plenary [Co(II)W12O40](6-) and demonstrate the same MPCT transition as the plenary complex, but they have shorter excited-state lifetimes (sub-300 ps in aqueous media). The decreased lifetimes are rationalized on the basis of nonradiative relaxation due to coordinating aqua ligands, increased interaction with cations due to increased negative charge, and the energy gap law, with the strongest single factor appearing to be the charge on the anion. The most promising results are from the Cr- and Fe-substituted systems, which retain excited-state lifetimes at least 50% of that of [Co(II)W12O40](6-) while more than tripling the absorbance at 400 nm.


Assuntos
Complexos de Coordenação/química , Metais Pesados/química , Óxidos/química , Cobalto/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Técnicas Eletroquímicas , Cinética , Luz , Modelos Químicos , Estrutura Molecular , Óxidos/síntese química , Espectrofotometria Infravermelho , Tungstênio/química
16.
Dalton Trans ; 45(7): 2818-22, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26815652

RESUMO

We show that polyoxometalates (POMs) are an excellent redox-active acceptor on which to base high performance 2(nd) order non-linear optical (NLO) chromophores. This is demonstrated through three new organoimido-Lindqvist derivatives with HRS ß0-values exceeding those of any dipolar organic system with comparable donor, π-system and absorption profile. Thus, organoimido POMs may provide a new generation of high performance, high transparency, and potentially redox-switchable NLO materials.

17.
Chem Sci ; 6(10): 5531-5543, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29861891

RESUMO

Visible light driven water oxidation has been demonstrated at near-neutral pH using photoanodes based on nanoporous films of TiO2, polyoxometalate (POM) water oxidation catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10- (1), and both known photosensitizer [Ru(bpy)2(H4dpbpy)]2+ (P2) and the novel crown ether functionalized dye [Ru(5-crownphen)2(H2dpbpy)](H22). Both triads, containing catalyst 1, and catalyst-free dyads, produce O2 with high faradaic efficiencies (80 to 94%), but presence of catalyst enhances quantum yield by up to 190% (maximum 0.39%). New sensitizer H22 absorbs light more strongly than P2, and increases O2 quantum yields by up to 270%. TiO2-2 based photoelectrodes are also more stable to desorption of active species than TiO2-P2: losses of catalyst 1 are halved when pH > TiO2 point-of-zero charge (pzc), and losses of sensitizer reduced below the pzc (no catalyst is lost when pH < pzc). For the triads, quantum yields of O2 are higher at pH 5.8 than at pH 7.2, opposing the trend observed for 1 under homogeneous conditions. This is ascribed to lower stability of the dye oxidized states at higher pH, and less efficient electron transfer to TiO2, and is also consistent with the 4th1-to-dye electron transfer limiting performance rather than catalyst TOFmax. Transient absorption reveals that TiO2-2-1 has similar 1st electron transfer dynamics to TiO2-P2-1, with rapid (ps timescale) formation of long-lived TiO2(e-)-2-1(h+) charge separated states, and demonstrates that metallation of the crown ether groups (Na+/Mg2+) has little or no effect on electron transfer from 1 to 2. The most widely relevant findings of this study are therefore: (i) increased dye extinction coefficients and binding stability significantly improve performance in dye-sensitized water splitting systems; (ii) binding of POMs to electrode surfaces can be stabilized through use of recognition groups; (iii) the optimal homogeneous and TiO2-bound operating pHs of a catalyst may not be the same; and (iv) dye-sensitized TiO2 can oxidize water without a catalyst.

18.
Chemistry ; 20(15): 4297-307, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24604763

RESUMO

In an effort to develop robust molecular sensitizers for solar fuel production, the electronic structure and photodynamics of transition-metal-substituted polyoxometalates (POMs), a novel class of compound in this context, was examined. Experimental and computational techniques including femtosecond (fs) transient absorption spectroscopy have been used to study the cobalt-containing Keggin POMs, [Co(II) W12 O40 ](6-) (1 a), [Co(III) W12 O40 ](5-) (2 a), [SiCo(II) (H2 O)W11 O39 ](6-) (3 a), and [SiCo(III) (H2 O)W11 O39 ](5-) (4 a), finding the longest lived charge transfer excited state so far observed in a POM and elucidating the electronic structures and excited-state dynamics of these compounds at an unprecedented level. All species exhibit a bi-exponential decay in which early dynamic processes with time constants in the fs domain yield longer lived excited states which decay with time constants in the ps to ns domain. The initially formed states of 1 a and 3 a are considered to result from metal-to-polyoxometalate charge transfer (MPCT) from Co(II) to W, while the longer-lived excited state of 1 a is tentatively assigned to a localized intermediate MPCT state. The excited state formed by the tetrahedral cobalt(II) centered heteropolyanion (1 a) is far longer-lived (τ=420 ps in H2 O; τ=1700 ps in MeCN) than that of 3 a (τ=1.3 ps), in which the single Co(II) atom is located in a pseudo-octahedral addendum site. Short-lived states are observed for the two Co(III) -containing heteropolyanions 2 a (τ=4.4 ps) and 4 a (τ=6.3 ps) and assigned solely to O→Co(III) charge transfer. The dramatically extended lifetime for 1 a versus 3 a is ascribed to a structural change permitted by the coordinatively flexible central site, weak orbital overlap of the central Co with the polytungstate framework, and putative transient valence trapping of the excited electron on a single W atom, a phenomenon not noted previously in POMs.

19.
Dalton Trans ; 41(33): 9876-8, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22821171

RESUMO

An unusual PFO(3)(2-)-templated "inverse Keggin" polyanion, [Mo(12)O(46)(PF)(4)](4-), has been isolated from the degradation reaction of an {Mo(132)}-type Keplerate to [PMo(12)O(40)](3-) by [Cu(MeCN)(4)](PF(6)) in acetonitrile. (31)P-NMR studies suggest a structure-directing role for [Cu(MeCN)(4)](+) in the formation of the highly unusual all-inorganic inverse Keggin structure.

20.
Dalton Trans ; 41(16): 4927-34, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22450432

RESUMO

Late-first row transition metal nitrate complexes of the tetradentate N-donor ligand cis-3,5-bis[(2-pyridinyleneamino]-trans-hydroxycyclohexane (DDOP) adopt a mono-cationic [M(DDOP)(H(2)O)(NO(3))](+) structure (M = Co, 1; Cu, 2; Zn, 3) in which the DDOP ligand occupies the equatorial plane. The complexes are essentially isostructural and isomorphous, allowing the Co(II) and Cu(II) complexes to co-crystallize in mixed-metal solid solutions with the formula [Co(x)Cu(1-x)(DDOP)(NO(3))(H(2)O)](NO(3)), where x = 0.4 (4), 0.1 (5), and 0.7 (6). For 4, structural and magnetochemical analysis indicate that the geometry of the octahedral Co(II) complex distorts to match that of the dominant Jahn-Teller distorted Cu(II) center. Magnetic susceptibility data of octahedral Co(II) are sensitive to ligand geometry distortions and have been analyzed accordingly, comparing 4 to the reference systems 1 and 2. Bond valence calculations have been used to estimate the relative stabilities of the six hydrogen bonded networks, suggesting that the stretching of the Co(II) coordination sphere 4 in is assisted by adoption of the most stable hydrogen bonded network; but that in 6 this is overcome by a higher loading of Co. This family of complexes therefore represent predictable metal-based tectons which can help probe the influence of secondary non-covalent interactions over metal coordination geometries and properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...