Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 36(4): 534-545, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27321186

RESUMO

Atypical protein kinase Cι (PKCι) is an oncogene in lung and ovarian cancer. The PKCι gene PRKCI is targeted for frequent tumor-specific copy number gain (CNG) in both lung squamous cell carcinoma (LSCC) and ovarian serous carcinoma (OSC). We recently demonstrated that in LSCC cells PRKCI CNG functions to drive transformed growth and tumorigenicity by activating PKCι-dependent cell autonomous Hedgehog (Hh) signaling. Here, we assessed whether OSC cells harboring PRKCI CNG exhibit similar PKCι-dependent Hh signaling. Surprisingly, we find that whereas PKCι is required for the transformed growth of OSC cells harboring PRKCI CNG, these cells do not exhibit PKCι-dependent Hh signaling or Hh-dependent proliferation. Rather, transformed growth of OSC cells is regulated by PKCι-dependent nuclear localization of the oncogenic transcription factor, YAP1. Lentiviral shRNA-mediated knockdown (KD) of PKCι leads to decreased nuclear YAP1 and increased YAP1 binding to angiomotin (AMOT), which sequesters YAP1 in the cytoplasm. Biochemical analysis reveals that PKCι directly phosphorylates AMOT at a unique site, Thr750, whose phosphorylation inhibits YAP1 binding. Pharmacologic inhibition of PKCι decreases YAP1 nuclear localization and blocks OSC tumor growth in vitro and in vivo. Immunohistochemical analysis reveals a strong positive correlation between tumor PKCι expression and nuclear YAP1 in primary OSC tumor samples, indicating the clinical relevance of PKCι-YAP1 signaling. Our results uncover a novel PKCι-AMOT-YAP1 signaling axis that promotes OSC tumor growth, and provide a rationale for therapeutic targeting of this pathway for treatment of OSC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Isoenzimas/metabolismo , Neoplasias Ovarianas/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Angiomotinas , Animais , Carcinogênese/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Isoenzimas/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfoproteínas/genética , Proteína Quinase C/genética , Transdução de Sinais , Transfecção , Proteínas de Sinalização YAP
2.
Oncogene ; 33(16): 2134-44, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23604119

RESUMO

Protein kinase C alpha (PKCα) can activate both pro- and anti-tumorigenic signaling depending upon cellular context. Here, we investigated the role of PKCα in lung tumorigenesis in vivo. Gene expression data sets revealed that primary human non-small lung cancers (NSCLC) express significantly decreased PKCα levels, indicating that loss of PKCα expression is a recurrent event in NSCLC. We evaluated the functional relevance of PKCα loss during lung tumorigenesis in three murine lung adenocarcinoma models (LSL-Kras, LA2-Kras and urethane exposure). Genetic deletion of PKCα resulted in a significant increase in lung tumor number, size, burden and grade, bypass of oncogene-induced senescence, progression from adenoma to carcinoma and a significant decrease in survival in vivo. The tumor promoting effect of PKCα loss was reflected in enhanced Kras-mediated expansion of bronchio-alveolar stem cells (BASCs), putative tumor-initiating cells, both in vitro and in vivo. LSL-Kras/Prkca(-/-) mice exhibited a decrease in phospho-p38 MAPK in BASCs in vitro and in tumors in vivo, and treatment of LSL-Kras BASCs with a p38 inhibitor resulted in increased colony size indistinguishable from that observed in LSL-Kras/Prkca(-/-) BASCs. In addition, LSL-Kras/Prkca(-/-) BASCs exhibited a modest but reproducible increase in TGFß1 mRNA, and addition of exogenous TGFß1 to LSL-Kras BASCs results in enhanced growth similar to untreated BASCs from LSL-Kras/Prkca(-/-) mice. Conversely, a TGFßR1 inhibitor reversed the effects of PKCα loss in LSL-Kras/Prkca(-/-) BASCs. Finally, we identified the inhibitors of DNA binding (Id) Id1-3 and the Wilm's Tumor 1 as potential downstream targets of PKCα-dependent tumor suppressor activity in vitro and in vivo. We conclude that PKCα suppresses tumor initiation and progression, at least in part, through a PKCα-p38MAPK-TGFß signaling axis that regulates tumor cell proliferation and Kras-induced senescence. Our results provide the first direct evidence that PKCα exhibits tumor suppressor activity in the lung in vivo.


Assuntos
Neoplasias Pulmonares/genética , Proteína Quinase C-alfa/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Bronquíolos/metabolismo , Bronquíolos/patologia , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Células-Tronco/patologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Oncogene ; 32(3): 286-95, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22349825

RESUMO

Alveolar rhabdomyosarcoma is an aggressive pediatric cancer exhibiting skeletal-muscle differentiation. New therapeutic targets are required to improve the dismal prognosis for invasive or metastatic alveolar rhabdomyosarcoma. Protein kinase C iota (PKCι) has been shown to have an important role in tumorigenesis of many cancers, but little is known about its role in rhabdomyosarcoma. Our gene-expression studies in human tumor samples revealed overexpression of PRKCI. We confirmed overexpression of PKCι at the mRNA and protein levels using our conditional mouse model that authentically recapitulates the progression of rhabdomyosarcoma in humans. Inhibition of Prkci by RNA interference resulted in a dramatic decrease in anchorage-independent colony formation. Interestingly, treatment of primary cell cultures using aurothiomalate (ATM), which is a gold-containing classical anti-rheumatic agent and a PKCι-specific inhibitor, resulted in decreased interaction between PKCι and Par6, decreased Rac1 activity and reduced cell viability at clinically relevant concentrations. Moreover, co-treatment with ATM and vincristine (VCR), a microtubule inhibitor currently used in rhabdomyosarcoma treatment regimens, resulted in a combination index of 0.470-0.793 through cooperative accumulation of non-proliferative multinuclear cells in the G2/M phase, indicating that these two drugs synergize. For in vivo tumor growth inhibition studies, ATM demonstrated a trend toward enhanced VCR sensitivity. Overall, these results suggest that PKCι is functionally important in alveolar rhabdomyosarcoma anchorage-independent growth and tumor-cell proliferation and that combination therapy with ATM and microtubule inhibitors holds promise for the treatment of alveolar rhabdomyosarcoma.


Assuntos
Isoenzimas/metabolismo , Terapia de Alvo Molecular/métodos , Proteína Quinase C/metabolismo , Rabdomiossarcoma Alveolar/tratamento farmacológico , Rabdomiossarcoma Alveolar/enzimologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Adjuvante , Sinergismo Farmacológico , Fase G2/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tiomalato Sódico de Ouro/farmacologia , Tiomalato Sódico de Ouro/uso terapêutico , Humanos , Isoenzimas/deficiência , Isoenzimas/genética , Camundongos , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Vincristina/farmacologia , Vincristina/uso terapêutico
4.
Oncogene ; 28(41): 3597-607, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19617897

RESUMO

Protein kinase Ciota (PKCiota) promotes non-small cell lung cancer (NSCLC) by binding to Par6alpha and activating a Rac1-Pak-Mek1,2-Erk1,2 signaling cascade. The mechanism by which the PKCiota-Par6alpha complex regulates Rac1 is unknown. Here we show that epithelial cell transforming sequence 2 (Ect2), a guanine nucleotide exchange factor for Rho family GTPases, is coordinately amplified and overexpressed with PKCiota in NSCLC tumors. RNA interference-mediated knockdown of Ect2 inhibits Rac1 activity and blocks transformed growth, invasion and tumorigenicity of NSCLC cells. Expression of constitutively active Rac1 (RacV12) restores transformation to Ect2-deficient cells. Interestingly, the role of Ect2 in transformation is distinct from its well-established role in cytokinesis. In NSCLC cells, Ect2 is mislocalized to the cytoplasm where it binds the PKCiota-Par6alpha complex. RNA interference-mediated knockdown of either PKCiota or Par6alpha causes Ect2 to redistribute to the nucleus, indicating that the PKCiota-Par6alpha complex regulates the cytoplasmic localization of Ect2. Our data indicate that Ect2 and PKCiota are genetically and functionally linked in NSCLC, acting to coordinately drive tumor cell proliferation and invasion through formation of an oncogenic PKCiota-Par6alpha-Ect2 complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Citocinese/genética , Citoplasma/metabolismo , Ativação Enzimática , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Transporte Proteico , Proteínas Proto-Oncogênicas/deficiência
5.
Oncogene ; 27(35): 4841-53, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18427549

RESUMO

Protein kinase Ciota (PKCiota) drives transformed growth of non-small cell lung cancer (NSCLC) cells through the Rho family GTPase Rac1. We show here that PKCiota activates Rac1 in NSCLC cells by formation of a PKCiota-Par6alpha complex that drives anchorage-independent growth and invasion through activation of matrix metalloproteinase-10 (MMP-10) expression. RNAi-mediated knockdown of PKCiota, Par6alpha or Rac1 expression inhibits NSCLC transformation and MMP-10 expression in vitro. Expression of wild-type Par6alpha in Par6alpha-deficient cells restores transformation and MMP-10 expression, whereas expression of Par6alpha mutants that either cannot bind PKCiota (Par6alpha-K19A) or couple to Rac1 (Par6alpha-DeltaCRIB) do not. Knockdown of MMP-10 expression blocks anchorage-independent growth and invasion of NSCLC cells and addition of catalytically active MMP-10 to PKCiota- or Par6alpha-deficient cells restores anchorage-independent growth and invasion. Dominant-negative PKCiota inhibits tumorigenicity and MMP-10 expression in subcutaneous NSCLC tumors. MMP-10 and PKCiota are coordinately overexpressed in primary NSCLC tumors, and tumor MMP-10 expression predicts poor survival in NSCLC patients. Our data define a PKCiota-Par6alpha-Rac1 signaling axis that drives anchorage-independent growth and invasion of NSCLC cells through induction of MMP-10 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Isoenzimas/metabolismo , Neoplasias Pulmonares/patologia , Metaloproteinase 10 da Matriz/metabolismo , Proteína Quinase C/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Ligação Proteica , Interferência de RNA
6.
Biochem Soc Trans ; 35(Pt 5): 996-1000, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17956262

RESUMO

PKC (protein kinase C) isoenzymes are key signalling components involved in the regulation of normal cell proliferation, differentiation, polarity and survival. The aberrant regulation of PKC isoenzymes has been implicated in the development of many human diseases including cancer [Fields and Gustafson (2003) Methods Mol. Biol. 233, 519-537]. To date, however, only one PKC isoenzyme, the aPKC [atypical PKCiota (protein kinase Ciota)], has been identified as a human oncogene [Regala, Weems, Jamieson, Khoor, Edell, Lohse and Fields (2005) Cancer Res. 65, 8905-8911]. PKCiota has also proven to be a useful prognostic marker and legitimate target for the development of novel pharmacological agents for the treatment of cancer. The PKCiota gene resides at chromosome 3q26 and is a frequent target of tumour-specific gene amplification in multiple forms of human cancer. PKCiota gene amplification in turn drives PKCiota overexpression in these cancers. Genetic disruption of PKCiota expression blocks multiple aspects of the transformed phenotype of human cancer cells including transformed growth in soft agar, invasion through Matrigel and growth of subcutaneous tumours in nude mice. Genetic dissection of oncogenic PKCiota signalling mechanisms demonstrates that PKCiota drives transformed growth by activating a PKCiota --> Rac1 --> PAK (p21-activated kinase) --> MEK [MAPK (mitogen-activated protein kinase) 1,2/ERK (extracellular-signal-regulated kinase) kinase] 1,2 signalling pathway [Regala, Weems, Jamieson, Copland, Thompson and Fields (2005) J. Biol. Chem. 280, 31109-31115]. The transforming activity of PKCiota requires the N-terminal PB1 (Phox-Bem1) domain of PKCiota, which serves to couple PKCiota with downstream effector molecules. Hence, there exists a strong rationale for developing novel cancer therapeutics that target the PB1 domain of PKCiota and thereby disrupt its interactions with effector molecules. Using a novel high-throughput drug screen, we identified compounds that can disrupt PB1-PB1 domain interactions between PKCiota and the adaptor molecule Par6 [Stallings-Mann, Jamieson, Regala, Weems, Murray and Fields (2006) Cancer Res. 66, 1767-1774]. Our screen identified the gold compounds ATG (aurothioglucose) and ATM (aurothiomalate) as specific inhibitors of the PB1-PB1 domain interaction between PKCiota and Par6 that exhibit anti-tumour activity against NSCLC (non-small-cell lung cancer) both in vitro and in vivo. Structural analysis, site-directed mutagenesis and modelling indicate that ATM specifically targets the PB1 domain of PKCiota to mediate its anti-tumour activity [Erdogan, Lamark, Stallings-Mann, Lee, Pellechia, Thompson, Johansen and Fields (2006) J. Biol. Chem. 281, 28450-28459]. Taken together, our recent work demonstrates that PKCiota signalling is required for transformed growth of human tumours and is an attractive target for development of mechanism-based cancer therapies. ATM is currently in Phase I clinical trials for the treatment of NSCLC.


Assuntos
Isoenzimas/metabolismo , Neoplasias/tratamento farmacológico , Oncogenes , Proteína Quinase C/metabolismo , Transdução de Sinais , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Prognóstico , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química
7.
Oncogene ; 25(25): 3565-75, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16462766

RESUMO

In hematopoietic cells the transforming potential of the ecotropic viral integration site 1 (Evi1) oncogene is thought to be dependent upon the ability to inhibit TGFbeta signaling. Although Evi1 has recently been implicated in certain epithelial cancers, the effects of Evi1 on transformation and TGFbeta signaling in epithelial cells are not completely understood. Herein, we have determined the effects of Evi1 on TGFbeta signaling in intestinal epithelial cells. Stable expression of Evi1 in non-transformed intestinal epithelial cells inhibited induction of some Smad3-dependent TGFbeta target genes, such as PAI1. However, TGFbeta-mediated induction of cellular adhesion signaling components such as integrin1 and paxillin was not inhibited by Evi1; nor did Evi1 inhibit TGFbeta-mediated epithelial to mesenchymal transition. Likewise, Evi1 did not inhibit TGFbeta-mediated downregulation of cyclin D1 or block TGFbeta-mediated growth inhibition. However, Evi1 did inhibit TGFbeta-mediated apoptosis by a process that involves phosphoinositide-3-kinase (PI3K) and its downstream effector AKT. The ability of Evi1 to suppress apoptosis is not restricted to TGFbeta-mediated cell death, since Evi1 also protects intestinal epithelial cells from taxol-mediated apoptosis. Evi1 is overexpressed in some human colon cancer cell lines, and overexpression is associated with amplification of the Evi1 gene. Knockdown of Evi1 by siRNA inhibited AKT phosphorylation in HT-29 human colon cancer cells and increased their sensitivity to taxol-mediated apoptosis. These data indicate that Evi1 functions as a survival gene in intestinal epithelial cells and colon cancer cells, activating PI3K/AKT and conveying resistance to both physiological and therapeutic apoptotic stimuli.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteína Oncogênica v-akt/metabolismo , Paclitaxel/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proto-Oncogenes/fisiologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Neoplasias do Colo/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Ratos , Transdução de Sinais/fisiologia , Ativação Transcricional
8.
Oncogene ; 20(35): 4777-92, 2001 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-11521190

RESUMO

In chronic myelogenous leukemia (CML), the oncogene bcr-abl encodes a dysregulated tyrosine kinase that inhibits apoptosis. We showed previously that human erythroleukemia K562 cells are resistant to antineoplastic drug (taxol)-induced apoptosis through the atypical protein kinase C iota isozyme (PKC iota), a kinase downstream of Bcr-Abl. The mechanism(s) by which PKC iota mediates cell survival to taxol is unknown. Here we demonstrate that PKC iota requires the transcription factor nuclear factor-kappaB (NF-kappaB) to confer cell survival. At apoptosis-inducing concentrations, taxol weakly induces IkappaB(alpha) proteolysis and NF-kappaB translocation in K562 cells, but potently induces its transcriptional activity. Inhibition of NF-kappaB activity (by blocking IkappaB(alpha) degradation) significantly sensitizes cells to taxol-induced apoptosis. Likewise, K562 cells expressing antisense PKC iota mRNA or kinase dead PKC iota (PKC iota-KD) are sensitized to taxol; these cells are rescued from apoptosis by NF-kappaB overexpression. Expression of constitutively active PKC iota (PKC iota-CA) upregulates NF-kappaB transactivation and rescues cells from apoptosis in the absence of Bcr-Abl tyrosine kinase activity. Using a chimeric GAL4-RelA transactivator, we find that taxol potently activates GAL4-RelA-dependent transcription. This activation was further upregulated by expression of PKC iota-CA and inhibited by expression of PKC iota-KD. Our results indicate that RelA transactivation is an important downstream target of the PKC iota-mediated Bcr-Abl signaling pathway and is required for resistance to taxol-induced apoptosis.


Assuntos
Proteínas I-kappa B , Isoenzimas/fisiologia , NF-kappa B/fisiologia , Proteína Quinase C/fisiologia , Ativação Transcricional , Sobrevivência Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fusão bcr-abl/fisiologia , Humanos , Quinase I-kappa B , Células K562 , Inibidor de NF-kappaB alfa , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/fisiologia , Fator de Transcrição RelA
9.
J Biol Chem ; 276(25): 22709-14, 2001 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-11331269

RESUMO

We have cloned and characterized a new member of the phosphatidylinositol kinase (PIK)-related kinase family. This gene, which we term human SMG-1 (hSMG-1), is orthologous to Caenorhabditis elegans SMG-1, a protein that functions in nonsense-mediated mRNA decay (NMD). cDNA sequencing revealed that hSMG-1 encodes a protein of 3031 amino acids containing a conserved kinase domain, a C-terminal domain unique to the PIK-related kinases and an FKBP12-rapamycin binding-like domain similar to that found in the PIK-related kinase mTOR. Immunopurified FLAG-tagged hSMG-1 exhibits protein kinase activity as measured by autophosphorylation and phosphorylation of the generic PIK-related kinase substrate PHAS-1. hSMG-1 kinase activity is inhibited by high nanomolar concentrations of wortmannin (IC(50) = 105 nm) but is not inhibited by a FKBP12-rapamycin complex. Mutation of conserved residues within the kinase domain of hSMG-1 abolishes both autophosphorylation and substrate phosphorylation, demonstrating that hSMG-1 exhibits intrinsic protein kinase activity. hSMG-1 phosphorylates purified hUpf1 protein, a phosphoprotein that plays a critical role in NMD, at sites that are also phosphorylated in whole cells. Based on these data, we conclude that hSMG-1 is the human orthologue to C. elegans SMG-1. Our data indicate that hSMG-1 may function in NMD by directly phosphorylating hUpf1 protein at physiologically relevant sites.


Assuntos
Proteínas Quinases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , DNA Complementar , Humanos , Metaloendopeptidases , Dados de Sequência Molecular , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Homologia de Sequência de Aminoácidos
10.
Cancer Res ; 61(4): 1375-81, 2001 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11245437

RESUMO

Protein kinase C (PKC) has been implicated in colon carcinogenesis in humans and in rodent models. However, little is known about the specific role of individual PKC isozymes in this process. We recently demonstrated that elevated expression of PKC betaII in the colonic epithelium induces hyperproliferation in vivo (N. R. Murray et al., J. Cell Biol., 145: 699-711, 1999). Because hyperproliferation is a major risk factor for colon cancer, we assessed whether specific alterations in PKC betaII expression occur during azoxymethane-induced colon carcinogenesis in mice. An increase in PKC betaII expression was observed in preneoplastic lesions (aberrant crypt foci, 3.7-fold) compared with saline-treated animals, and in colon tumors (7.8-fold; P = 0.011) compared with uninvolved colonic epithelium. In contrast, PKC alpha and PKC betaI (a splicing variant of PKC betaII) expression was slightly decreased in aberrant crypt foci and dramatically reduced in colon tumors. Quantitative reverse transcription-PCR analysis revealed that PKC mRNA levels do not directly correlate with PKC protein levels, indicating that PKC isozyme expression is likely regulated at the posttranscriptional/translational level. Finally, transgenic mice expressing elevated PKC betaII in the colonic epithelium exhibit a trend toward increased colon tumor formation after exposure to azoxymethane. Taken together, our results demonstrate that elevated expression of PKC betaII is an important early, promotive event that plays a role in colon cancer development.


Assuntos
Neoplasias do Colo/enzimologia , Isoenzimas/biossíntese , Lesões Pré-Cancerosas/enzimologia , Proteína Quinase C/biossíntese , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Feminino , Predisposição Genética para Doença , Imuno-Histoquímica , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Proteína Quinase C/genética , Proteína Quinase C beta , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA