Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 10(17): e2100383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938638

RESUMO

Indwelling arterial lines, the clinical gold standard for continuous blood pressure (BP) monitoring in the pediatric intensive care unit (PICU), have significant drawbacks due to their invasive nature, ischemic risk, and impediment to natural body movement. A noninvasive, wireless, and accurate alternative would greatly improve the quality of patient care. Recently introduced classes of wireless, skin-interfaced devices offer capabilities in continuous, precise monitoring of physiologic waveforms and vital signs in pediatric and neonatal patients, but have not yet been employed for continuous tracking of systolic and diastolic BP-critical for guiding clinical decision-making in the PICU. The results presented here focus on materials and mechanics that optimize the system-level properties of these devices to enhance their reliable use in this context, achieving full compatibility with the range of body sizes, skin types, and sterilization schemes typically encountered in the PICU. Systematic analysis of the data from these devices on 23 pediatric patients, yields derived, noninvasive BP values that can be quantitatively validated against direct recordings from arterial lines. The results from this diverse cohort, including those under pharmacological protocols, suggest that wireless, skin-interfaced devices can, in certain circumstances of practical utility, accurately and continuously monitor BP in the PICU patient population.


Assuntos
Cuidados Críticos , Sinais Vitais , Pressão Sanguínea , Criança , Humanos , Recém-Nascido , Monitorização Fisiológica , Pele
2.
Lab Chip ; 20(23): 4391-4403, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33089837

RESUMO

Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.


Assuntos
Técnicas Biossensoriais , Suor , Eletrônica , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Pele
3.
Nat Med ; 26(3): 418-429, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161411

RESUMO

Standard clinical care in neonatal and pediatric intensive-care units (NICUs and PICUs, respectively) involves continuous monitoring of vital signs with hard-wired devices that adhere to the skin and, in certain instances, can involve catheter-based pressure sensors inserted into the arteries. These systems entail risks of causing iatrogenic skin injuries, complicating clinical care and impeding skin-to-skin contact between parent and child. Here we present a wireless, non-invasive technology that not only offers measurement equivalency to existing clinical standards for heart rate, respiration rate, temperature and blood oxygenation, but also provides a range of important additional features, as supported by data from pilot clinical studies in both the NICU and PICU. These new modalities include tracking movements and body orientation, quantifying the physiological benefits of skin-to-skin care, capturing acoustic signatures of cardiac activity, recording vocal biomarkers associated with tonality and temporal characteristics of crying and monitoring a reliable surrogate for systolic blood pressure. These platforms have the potential to substantially enhance the quality of neonatal and pediatric critical care.


Assuntos
Técnicas Biossensoriais , Unidades de Terapia Intensiva Neonatal , Unidades de Terapia Intensiva Pediátrica , Monitorização Fisiológica , Pele/anatomia & histologia , Tecnologia sem Fio , Monitorização Ambulatorial da Pressão Arterial , Criança , Pré-Escolar , Eletrocardiografia , Desenho de Equipamento , Humanos , Recém-Nascido , Fotopletismografia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...