Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Cancer ; 11(16): 4754-4761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626522

RESUMO

The mechanisms of signal transduction by interferon-tau (IFN-τ) are widely known during the gestation of ruminants. In trophoblast cells, IFN-τ involves the activation of the JAK-STAT pathway, and it can have effects on other cell types, such as tumor cells. Here we report that the HPV16-positive BMK-16/myc cell treated with ovine IFN-τ, results in the activation of the canonical JAK-STAT and non-canonical JAK-STAT pathway. The MAPK signaling pathway was activated, we detected the proteins MEK1, MEK2, Raf1, STAT3, STA4, STAT5 and STAT6. Moreover, IFN-τ induced the expression of MHC Class I, MX and IP10 in the tumor cells and this response may be associated with the viral replication and with the anti-proliferative and the immunoregulatory effects of IFN-τ.

2.
J Cancer ; 7(15): 2231-2240, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994659

RESUMO

Interferon tau (IFN-τ) is a promising alternative antiviral and immunotherapeutic agent in a wide variety of diseases including infectious, neurodegenerative, autoimmune and cancer due to its low toxicity in comparison with other type I interferon´s. The objective of our study was established the effect of the bovine IFN-τ on human (SiHa) and murine (BMK-16/myc) cells transformed with HPV 16 and evaluates the antitumor effect in a murine tumor model HPV 16 positive. We determine that bovine IFN-τ has antiproliferative effects, pro-apoptotic activity and induces repression of viral E6 and E7 oncogenes (time- and dose-dependent) on human and murine cells transformed with HPV 16 similar to the effects of IFN-ß. However, IFN-τ induces greater antiproliferative effect, apoptosis and repression of both oncogenes in BMK-16/myc cells compared to SiHa cells. The differences were explained by the presence and abundance of the type I interferon receptor (IFNAR) in each cell line. On the other hand, we treated groups of tumor-bearing mice (HPV16 positive) with IFN-τ and showed the inhibition tumor growth effect in vivo. Our finding indicates that bovine IFN-τ may be a good candidate for immunotherapy against cervical cancer.

3.
J Cancer ; 7(14): 1950-1959, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877210

RESUMO

Human papillomavirus (HPV) is a DNA virus that infects epithelial cells and has been implicated in the development of cervical cancer. Few therapeutic strategies have been designed for the treatment of cervical intraepithelial neoplasia, a precursor of cervical cancer. In these early stages, the HPV E2 protein is the most important viral factor involved in viral gene expression and plays crucial roles during the vegetative viral cycle in epithelial cells. Papillomavirus E2 binds specifically to palindromic ACCN6GGT sequences, referred to as the E2 binding sites (E2BS), which are concentrated within the viral long control region, and which are responsible for regulation of the HPV protein's expression. Here, we consider E2BS as a candidate sequence to induce the expression of antiviral therapeutic genes selectively in HPV-infected cells expressing the E2 protein. This study focuses on the use of an HPV-specific promoter comprised of four E2BS to drive the expression of IL-12, leading to an antitumor effect in an HPV-positive murine tumor model. The therapeutic strategy was implemented via viral gene therapy using adenoviral vectors with recombinant E2 and IL-12 genes and E2BS-IL-12. We demonstrate that the HPV-specific promoter E2BS is functional in vitro and in vivo through transactivation of HPV E2 transcription factor.

4.
Methods Mol Biol ; 1249: 153-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25348304

RESUMO

RNA interference is a natural mechanism to silence post-transcriptional gene expression in eukaryotic cells in which microRNAs act to cleave or halt the translation of target mRNAs at specific target sequences. Mature microRNAs, 19-25 nucleotides in length, mediate their effect at the mRNA level by inhibiting translation, or inducing cleavage of the mRNA target. This process is directed by the degree of complementary nucleotides between the microRNAs and the target mRNA; perfect complementary base pairing induces cleavage of mRNA, whereas several mismatches lead to translational arrest. Biological effects of microRNAs can be manipulated through the use of small interference RNAs (siRNAs) generated by chemical synthesis, or by cloning in molecular vectors. The cloning of a DNA insert in a molecular vector that will be transcribed into the corresponding siRNAs is an approach that has been developed using siRNA expression plasmids. These vectors contain DNA inserts designed with software to generate highly efficient siRNAs which will assemble into RNA-induced silencing complexes (RISC), and silence the target mRNA. In addition, the DNA inserts may be contained in cloning cassettes, and introduced in other molecular vectors. In this chapter we describe an attractive technology platform to silence cellular gene expression using specific siRNA expression plasmids, and evaluate its biological effect on target gene expression in human cervical cancer cells.


Assuntos
Expressão Gênica , Inativação Gênica , Plasmídeos/genética , RNA Interferente Pequeno/metabolismo , Neoplasias do Colo do Útero/genética , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Centrifugação , Clonagem Molecular , DNA/metabolismo , Escherichia coli/metabolismo , Feminino , Humanos , MicroRNAs/metabolismo , Dados de Sequência Molecular , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Reprodutibilidade dos Testes , Mapeamento por Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transfecção , Transformação Genética
5.
Obstet Gynecol Int ; 2013: 912780, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690785

RESUMO

Cervical cancer is the second most common cause of death from cancer in women worldwide, and the development of new diagnostic, prognostic, and treatment strategies merits special attention. Many efforts have been made to design new drugs and develop immunotherapy and gene therapy strategies to treat cervical cancer. HPV genotyping has potentially valuable applications in triage of low-grade abnormal cervical cytology, assessment of prognosis and followup of cervical intraepithelial neoplasia, and in treatment strategies for invasive cervical cancer. It is known that during the development of cervical cancer associated with HPV infection, a cascade of abnormal events is induced, including disruption of cellular cycle control, alteration of gene expression, and deregulation of microRNA expression. Thus, the identification and subsequent functional evaluation of host proteins associated with HPV E6 and E7 oncoproteins may provide useful information in understanding cervical carcinogenesis, identifying cervical cancer molecular markers, and developing specific targeting strategies against tumor cells. Therefore, in this paper, we discuss the main diagnostic methods, management strategies, and followup of HPV-associated cervical lesions and review clinical trials applying gene therapy strategies against the development of cervical cancer.

6.
FEMS Microbiol Lett ; 260(2): 178-85, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16842342

RESUMO

The Helicobacter pylori infection of gastric mucosa is one of the most common infectious diseases and is associated with a variety of clinical outcomes, including peptic ulcer disease and gastric cancer. Helicobacter pylori-induced damage to gastric mucosal cells is controlled by bacterial virulence factors, which include VacA and CagA. Outer membrane vesicles are constantly shed by the bacteria and can provide an additional mechanism for pathogenicity by releasing non-secretable factors which can then interact with epithelial cells. The present report shows that external membrane vesicles are able to induce apoptosis not mediated by mitochondrial pathway in gastric (AGS) epithelial cells, as demonstrated by the lack of cytochrome c release with an activation of caspase 8 and 3. Apoptosis induced by these vesicles does not require a classic VacA+ phenotype, as a negative strain with a truncated and therefore non-secretable form of this protein can also induce cell death. These results should be taken into account in future studies of H. pylori pathogenicity in strains apparently VacA-.


Assuntos
Apoptose , Membrana Celular/ultraestrutura , Células Epiteliais/fisiologia , Mucosa Gástrica/fisiologia , Helicobacter pylori/patogenicidade , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Células Epiteliais/microbiologia , Mucosa Gástrica/citologia , Mucosa Gástrica/microbiologia , Helicobacter pylori/ultraestrutura , Humanos , Virulência
7.
Salud pública Méx ; 43(3): 237-247, mayo-jun. 2001. CD-ROM
Artigo em Inglês | LILACS | ID: lil-309572

RESUMO

Helicobacter pylori ha adquirido gran importancia durante las últimas dos décadas, al ser reconocido como un importante patógeno que infecta una gran porción de la población humana. Este microrganismo es reconocido como el principal agente que causa la gastritis crónica y la úlcera duodenal, además de que se ha asociado con el subsecuente desarrollo del carcinoma gástrico. Los mecanismos patogénicos de H. pylori y su relación con los padecimientos gástricos no se han definido en forma clara. Sin embargo, actualmente está bien establecido que la ureasa, la citotoxina vacuolizante VacA y los productos de los genes de la isla de patogenicidad (cag PAI) son los principales factores de virulencia de este organismo. Así, los individuos infectados con cepas que expresan dichos factores de virulencia, probablemente manifiesten una marcada inflamación local que podría inducir el desarrollo de úlcera péptica y cáncer gástrico. La manera como la infección se propaga a nivel mundial sugiere la posibilidad de múltiples vías de transmisión. A consecuencia de la importancia que H. pylori ha adquirido como patógeno humano, los laboratorios del mundo se esfuerzan para desarrollar una vacuna que confiera protección inmunológica de larga duración contra la infección por este microorganismo. El objetivo de esta revisión es presentar los hallazgos más relevantes sobre la biología de H. pylori y su interacción con su huésped humano. El texto completo de este artículo también está disponible en: http://www.insp.mx/salud/index.htm


Assuntos
Neoplasias Gástricas , Helicobacter pylori , Infecções por Helicobacter , Úlcera Péptica/etiologia , Vacinas , Fatores de Risco , Citotoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...