Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19788, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957157

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) models have become an attractive tool for in vitro cardiac disease modeling and drug studies. These models are moving towards more complex three-dimensional microphysiological organ-on-chip systems. Label-free imaging-based techniques capable of quantifying contractility in 3D are needed, as traditional two-dimensional methods are ill-suited for 3D applications. Here, we developed multifocal (MF) optical projection microscopy (OPM) by integrating an electrically tunable lens to our in-house built optical projection tomography setup for extended depth of field brightfield imaging in CM clusters. We quantified cluster biomechanics by implementing our previously developed optical flow-based CM video analysis for MF-OPM. To demonstrate, we acquired and analyzed multiangle and multifocal projection videos of beating hiPSC-CM clusters in 3D hydrogel. We further quantified cluster contractility response to temperature and adrenaline and observed changes to beating rate and relaxation. Challenges emerge from light penetration and overlaying textures in larger clusters. However, our findings indicate that MF-OPM is suitable for contractility studies of 3D clusters. Thus, for the first time, MF-OPM is used in CM studies and hiPSC-CM 3D cluster contraction is quantified in multiple orientations and imaging planes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/fisiologia , Microscopia , Células-Tronco Pluripotentes Induzidas/fisiologia
2.
Sci Rep ; 11(1): 6538, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753803

RESUMO

Assessing cell morphology and function, as well as biomaterial performance in cell cultures, is one of the key challenges in cell biology and tissue engineering (TE) research. In TE, there is an urgent need for methods to image actual three-dimensional (3D) cell cultures and access the living cells. This is difficult using established optical microscopy techniques such as wide-field or confocal microscopy. To address the problem, we have developed a new protocol using Optical Projection Tomography (OPT) to extract quantitative and qualitative measurements from hydrogel cell cultures. Using our tools, we demonstrated the method by analyzing cell response in three different hydrogel formulations in 3D with 1.5 mm diameter samples of: gellan gum (GG), gelatin functionalized gellan gum (gelatin-GG), and Geltrex. We investigated cell morphology, density, distribution, and viability in 3D living cells. Our results showed the usability of the method to quantify the cellular responses to biomaterial environment. We observed that an elongated morphology of cells, thus good material response, in gelatin-GG and Geltrex hydrogels compared with basic GG. Our results show that OPT has a sensitivity to assess in real 3D cultures the differences of cellular responses to the properties of biomaterials supporting the cells.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Imageamento Tridimensional/métodos , Tomografia/métodos , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Gelatina/química , Microscopia Confocal , Polissacarídeos Bacterianos/química , Engenharia Tecidual
3.
Sci Rep ; 9(1): 13934, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558755

RESUMO

This study focuses on improving the reconstruction process of the brightfield optical projection tomography (OPT). OPT is often described as the optical equivalent of X-ray computed tomography, but based on visible light. The detection optics used to collect light in OPT focus on a certain distance and induce blurring in those features out of focus. However, the conventionally used inverse Radon transform assumes an absolute focus throughout the propagation axis. In this study, we model the focusing properties of the detection by coupling Gaussian beam model (GBM) with the Radon transform. The GBM enables the construction of a projection operator that includes modeling of the blurring caused by the light beam. We also introduce the concept of a stretched GBM (SGBM) in which the Gaussian beam is scaled in order to avoid the modeling errors related to the determination of the focal plane. Furthermore, a thresholding approach is used to compress memory usage. We tested the GBM and SGBM approaches using simulated and experimental data in mono- and multifocal modes. When compared with the traditionally used filtered backprojection algorithm, the iteratively computed reconstructions, including the Gaussian models GBM and SGBM, provided smoother images with higher contrast.

4.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118530, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415840

RESUMO

Phasor-assisted Metal Induced Energy Transfer-Fluorescence Lifetime Imaging Microscopy (MIET-FLIM) nanoscopy is introduced as a powerful tool for functional cell biology research. Thin metal substrates can be used to obtain axial super-resolution via nanoscale distance-dependent MIET from fluorescent dyes towards a nearby metal layer, thereby creating fluorescence lifetime contrast between dyes located at different nanoscale distance from the metal. Such data can be used to achieve axially super-resolved microscopy images, a process known as MIET-FLIM nanoscopy. Suitability of the phasor approach in MIET-FLIM nanoscopy is first demonstrated using nanopatterned substrates, and furthermore applied to characterize the distance distribution of the epithelial basal membrane of a biological cell from the gold substrate. The phasor plot of an entire cell can be used to characterize the full Förster resonance energy transfer (FRET) trajectory as a large distance heterogeneity within the sensing range of about 100 nm from the metal surface is present due to the extended shape of cell with curvatures. In contrast, the different proteins of nuclear lamina show strong confinement close to the nuclear envelope in nanoscale. We find the lamin B layer resides in average at shorter distances from the gold surface compared to the lamin A/C layer located in more extended ranges. This and the observed heterogeneity of the protein layer thicknesses suggests that A- and B-type lamins form distinct networks in the nuclear lamina. Our results provide detailed insights for the study of the different roles of lamin proteins in chromatin tethering and nuclear mechanics.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanotecnologia , Lâmina Nuclear/química , Proteínas Nucleares/metabolismo , Células A549 , Ouro/química , Humanos , Nanopartículas Metálicas/química , Microscopia de Fluorescência , Lâmina Nuclear/metabolismo , Proteínas Nucleares/química , Imagem Óptica
5.
Biomed Opt Express ; 10(4): 1891-1904, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086710

RESUMO

We demonstrate for the first time that an ultra-broadband 7 femtosecond (fs) few-cycle laser can be used for multicolor nonlinear imaging in a single channel detection geometry, when employing a time-resolved fluorescence detection scheme. On a multi-chromophore-labelled cell sample we show that the few-cycle laser can efficiently excite the multiple chromophores over a >400 nm two-photon absorption range. By combining the few-cycle laser excitation with time-correlated single-photon counting (TCSPC) detection to record two-photon fluorescence lifetime imaging microscopy (FLIM) images, the localization of different chromophores in the cell can be identified based on their fluorescence decay properties. The novel SyncRGB-FLIM multi-color bioimaging technique opens the possibility of real-time protein-protein interaction studies, where its single-scan operation translates into reduced laser exposure of the sample, resulting in more photoprotective conditions for biological specimens.

6.
Phys Med Biol ; 64(4): 045017, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30630144

RESUMO

Solving the fluorophore distribution in a tomographic setting has been difficult because of the lack of physically meaningful and computationally applicable propagation models. This study concentrates on the direct modelling of fluorescence signals in optical projection tomography (OPT), and on the corresponding inverse problem. The reconstruction problem is solved using emission projections corresponding to a series of rotational imaging positions of the sample. Similarly to the bright field OPT bearing resemblance with the transmission x-ray computed tomography, the fluorescent mode OPT is analogous to x-ray fluorescence tomography (XFCT). As an improved direct model for the fluorescent OPT, we derive a weighted Radon transform based on the XFCT literature. Moreover, we propose a simple and fast iteration scheme for the slice-wise reconstruction of the sample. The developed methods are applied in both numerical experiments and inversion of fluorescent OPT data from a zebrafish embryo. The results demonstrate the importance of propagation modelling and our analysis provides a flexible modelling framework for fluorescent OPT that can easily be modified to adapt to different imaging setups.


Assuntos
Fluorescência , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Tomografia Óptica , Algoritmos , Imagens de Fantasmas
7.
Nanoscale ; 11(1): 258-265, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30534716

RESUMO

The control of quantum dot (QD) photoluminescence (PL) is a challenge for many applications. It is well known that plasmonic resonances can enhance this PL. In this work, we couple QDs with silver nanoparticles and immerse the system in a photochromic organic material. As these molecules are optical switches going from a transparent to a colored isomer by absorbing UV light, we observe on one hand a Förster Resonant Energy Transfer (FRET) between the QD emission and the absorbing isomer and on the other hand a plasmonic PL enhancement. The photochromic transition leads to the optical control of the FRET, allowing us to control the QD de-excitation preferences (radiative or non-radiative) and so the emitted light.

8.
Phys Med Biol ; 63(1): 015024, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29205168

RESUMO

Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Fluxometria por Laser-Doppler/métodos , Imagens de Fantasmas , Hemodinâmica , Humanos
9.
Langmuir ; 32(20): 5173-82, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27138138

RESUMO

The microstructure and permeability are crucial factors for the development of hydrogels for tissue engineering, since they influence cell nutrition, penetration, and proliferation. The currently available imaging methods able to characterize hydrogels have many limitations. They often require sample drying and other destructive processing, which can change hydrogel structure, or they have limited imaging penetration depth. In this work, we show for the first time an alternative nondestructive method, based on optical projection tomography (OPT) imaging, to characterize hydrated hydrogels without the need of sample processing. As proof of concept, we used gellan gum (GG) hydrogels obtained by several cross-linking methods. Transmission mode OPT was used to analyze image microtextures, and emission mode OPT to study mass transport. Differences in hydrogel structure related to different types of cross-linking and between modified and native GG were found through the acquired Haralick's image texture features followed by multiple discriminant analysis (MDA). In mass transport studies, the mobility of FITC-dextran (MW 20, 150, 2000 kDa) was analyzed through the macroscopic hydrogel. The FITC-dextran velocities were found to be inversely proportional to the size of the dextran as expected. Furthermore, the threshold size in which the transport is affected by the hydrogel mesh was found to be 150 kDa (Stokes' radii between 69 and 95 Å). On the other hand, the mass transport study allowed us to define an index of homogeneity to assess the cross-linking distribution, structure inside the hydrogel, and repeatability of hydrogel production. As a conclusion, we showed that the set of OPT imaging based material characterization methods presented here are useful for screening many characteristics of hydrogel compositions in relatively short time in an inexpensive manner, providing tools for improving the process of designing hydrogels for tissue engineering and drugs/cells delivery applications.

11.
IEEE Rev Biomed Eng ; 9: 106-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26929060

RESUMO

Laser speckle is a complex interference phenomenon that can easily be understood, in concept, but is difficult to predict mathematically, because it is a stochastic process. The use of laser speckle to produce images, which can carry many types of information, is called laser speckle imaging (LSI). The biomedical applications of LSI started in 1981 and, since then, many scientists have improved the laser speckle theory and developed different imaging techniques. During this process, some inconsistencies have been propagated up to now. These inconsistencies should be clarified in order to avoid errors in future works. This review presents a review of the laser speckle theory used in biomedical applications. Moreover, we also make a review of the practical concepts that are useful in the construction of laser speckle imagers. This study is not only an exposition of the concepts that can be found in the literature but also a critical analysis of the investigations presented so far. Concepts like scatterers velocity distribution, effect of static scatterers, optimal speckle size, light penetration angle, and contrast computation algorithms are discussed in detail.


Assuntos
Lasers , Microvasos/fisiologia , Monitorização Fisiológica/métodos , Algoritmos , Hemodinâmica , Humanos
12.
Biomed Opt Express ; 5(10): 3443-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360363

RESUMO

An Optical Projection Tomography (OPT) system was developed and optimized to image 3D tissue engineered products based in hydrogels. We develop pre-reconstruction algorithms to get the best result from the reconstruction procedure, which include correction of the illumination and determination of sample center of rotation (CoR). Existing methods for CoR determination based on the detection of the maximum variance of reconstructed slices failed, so we develop a new CoR search method based in the detection of the variance sharpest local maximum. We show the capabilities of the system to give quantitative information of different types of hydrogels that may be useful in its characterization.

13.
Med Biol Eng Comput ; 51(1-2): 103-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23065628

RESUMO

Measuring functional activity in brain in connection with neural stimulation faces technological challenges. Our goal is to evaluate, in relative terms, the real-time variations of local cerebral blood flow in rat brain, with a convenient spatial resolution. The use of laser Doppler flowmetry (LDF) probes is a promising approach but commercially available LDF probes are still too large (450 µm) to allow insertion in brain tissue without causing damage in an extension that may negatively impact local measurements. The self-mixing technique coupled to LDF is herein proposed to overcome limitations of the minimal diameter of the probe imposed by non-self-mixing probes (commercial available probes). Our Monte Carlo simulations show that laser photons have a mean penetration depth of 0.15 mm, on the rat brain with the 785 nm laser light microprobe. Moreover, three self-mixing signal processing methods are tested: counting method, autocorrelation method, power spectrum method. The perfusion signal computed shows a good linearity with the scatterers velocity, for the three methods (a determination coefficient close to one is obtained), for the in vitro measurements. Furthermore, we believe that these indicators can be used to monitor local blood flow changes in the rat brain.


Assuntos
Encéfalo/irrigação sanguínea , Fluxometria por Laser-Doppler , Microcirculação/fisiologia , Microvasos/fisiologia , Monitorização Fisiológica , Animais , Masculino , Método de Monte Carlo , Perfusão , Imagens de Fantasmas , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
14.
Physiol Meas ; 31(11): 1449-65, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20855927

RESUMO

Local pulse-wave velocity (PWV) is an accurate indicator of the degree of arteriosclerosis (stiffness) in an artery, providing a direct characterization of the properties of its wall. Devices currently available for local PWV measurement are mainly based on ultrasound systems and have not yet been generalized to clinical practice since they require high technical expertise and most of them are limited in precision, due to the lack of reliable signal processing methods. The present work describes a new type of probe, based on a double-headed piezoelectric (PZ) sensor. The principle of PWV measurement involves determination of the pulse transit time between the signals acquired simultaneously by both PZs, placed 23 mm apart. The double probe (DP) characterization is accomplished in three main studies, carried out in a dedicated test bench system, capable of reproducing a range of clinically relevant properties of the cardiovascular system. The first study refers to determination of the impulse response (IR) for each PZ sensor, whereas the second one explores the existence of crosstalk between both transducers. In the last one, DP time resolution is inferred from a set of three different algorithms based on (a) the maximum of cross-correlation function, (b) the maximum amplitude detection and (c) the zero-crossing point identification. These values were compared with those obtained by the reference method, which consists of the simultaneous acquisition of pressure waves by means of two pressure sensors. The new probe demonstrates good performance on the test bench system and results show that the signals do not exhibit crosstalk. A good agreement was also verified between the PWV obtained from the DP signals (19.55 ± 2.02 ms(-1)) and the PWV determined using the reference method (19.26 ± 0.04 ms(-1)). Although additional studies are still required, this probe seems to be a valid alternative to local PWV stand-alone devices.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas de Diagnóstico Cardiovascular/instrumentação , Fluxo Pulsátil/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...