Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 11764-11772, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625675

RESUMO

Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.

2.
Inorg Chem ; 62(16): 6197-6201, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37039460

RESUMO

A P162- polyphosphide dianion ink was produced by the reaction of red phosphorus with a binary thiol-amine mixture of ethanethiol (ET) and ethylenediamine (en). The polyphosphide was identified by solution 31P NMR spectroscopy and electrospray ionization mass spectrometry. This solute was compared to the reaction products of white phosphorus (P4) and other elemental pnictides in the same solvent system. The reaction of P4 with ET and en gives the same P162- polyphosphide; however, the easier handling and lower reactivity of red phosphorus highlights the novelty of that reaction. Elemental arsenic and antimony both give mononuclear pnictogen-sulfide-thiolate complexes upon reaction with ET and en under otherwise identical conditions, with this difference likely resulting from the greater covalency and tendency of phosphorus to form P-P bonds.

3.
Angew Chem Int Ed Engl ; 62(19): e202300254, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36855012

RESUMO

The first consistent series of mononuclear 17-electron complexes of three Group 7 elements has been isolated in crystalline form and studied by X-ray diffraction and spectroscopic methods. The paramagnetic compounds have a composition of [M0 (CO)(CNp-F-ArDArF2 )4 ] (M=Mn, Tc, Re; ArDArF2 =2,6-(3,5-(CF3 )2 C6 H3 )2 C6 H2 F) and are stabilized by four sterically encumbering isocyanides, which prevent the metalloradicals from dimerization. They have a square pyramidal structure with the carbonyl ligands as apexes. The frozen-solution EPR spectra of the rhenium and technetium compounds are clearly anisotropic with large 99 Tc and 185,187 Re hyperfine interactions for one component. High-field EPR (Q band and W band) has been applied for the elucidation of the EPR parameters of the manganese(0) complex.

4.
Chem Commun (Camb) ; 59(27): 4028-4031, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36924117

RESUMO

The first crystalline technetium complex in a negative oxidation state, [Tc-I(CO)(CNp-F-ArDArF2)4]-, was isolated and structurally characterized as its [Na(Crypt-2.2.2)]+ salt. It mirrors the properties of the textbook organometallic compound Na[Tc(CO)5], which has eluded isolation and structural characterization until today. [Na(Crypt-2.2.2)][Tc-I(CO)(CNp-F-ArDArF2)4] reacts expectedly as a nucleophile, which is demonstrated by reactions with HCl and ClSnMe3. They give the unprecedented monohydrido and trimethylstannyl complexes of technetium.

5.
Dalton Trans ; 52(15): 4768-4778, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36943090

RESUMO

Reactions of [Re(NPhF)Cl3(PPh3)2] ({NPhF}2- = p-fluorophenylimide) with a variety of alkyl and aryl isocyanides have been studied. Different reactivity patterns and products have been obtained depending on the steric and electronic properties of the individual ligands. This involves the formation of 1 : 1 and 1 : 2 exchange products of Re(V) with the general formulae mer-[Re(NPhF)Cl3(PPh3)(isocyanide)] and cis- or trans-[Re(NPhF)Cl3(isocyanide)2]. The stability of the obtained products is correlated with the substitution pattern of the isocyanide ligands. The products have been studied by single-crystal X-ray diffraction and spectroscopic methods, including IR and multinuclear NMR spectroscopy as well as mass spectrometry. The use of partially fluorinated starting materials and ligands allows the modulation of the solubilities of the starting materials and the products as well as the monitoring of the reactions by means of 19F NMR. The attachment of the CF3 or F substituent on the isocyanides gives control over the steric bulk and the electronic properties of the ligands and, thus, their reactivity.

6.
Molecules ; 27(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36500639

RESUMO

Organometallic approaches are of ongoing interest for the development of novel functional 99mTc radiopharmaceuticals, while the basic organotechnetium chemistry seems frequently to be little explored. Thus, structural and reactivity studies with the long-lived isotope 99Tc are of permanent interest as the foundation for further progress in the related radiopharmaceutical research with this artificial element. Particularly the knowledge about the organometallic chemistry of high-valent technetium compounds is scarcely developed. Here, phenylimido complexes of technetium(V) with different isocyanides are introduced. They have been synthesized by ligand-exchange procedures starting from [Tc(NPh)Cl3(PPh3)2]. Different reactivity patterns and products have been obtained depending on the steric and electronic properties of the individual ligands. This involves the formation of 1:1 and 1:2 exchange products of Tc(V) with the general formulae [Tc(NPh)Cl3(PPh3)(isocyanide)], cis- or trans-[Tc(NPh)Cl3(isocyanide)2], but also the reduction in the metal and the formation of cationic technetium(I) complex of the formula [Tc(isocyanide)6]+ when p-fluorophenyl isocyanide is used. The products have been studied by single-crystal X-ray diffraction and spectroscopic methods, including IR and multinuclear NMR spectroscopy. DFT calculations on the different isocyanides allow the prediction of their reactivity towards electron-rich and electron-deficient metal centers by means of the empirical SADAP parameter, which has been derived from the potential energy surface of the electron density on their potentially coordinating carbon atoms.


Assuntos
Cianetos , Tecnécio , Tecnécio/química , Compostos Radiofarmacêuticos/química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Metais
7.
Inorg Chem ; 61(40): 16163-16176, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36167508

RESUMO

Reactions of the alkyl isocyanide fac-[Tc(CO)3(CNR)2Cl] complexes (2) (CNR = CNnBu or CNtBu) with the sterically encumbered isocyanide CNp-FArDarF2 [DArF = 3,5-(CF3)2C6H3] allow a selective exchange of the carbonyl ligands of 2 and the isolation of the mixed-isocyanide complexes mer,trans-[Tc(CNp-FArDarF2)3(CNR)2Cl] (3). Depending on the steric requirements of the residues R, the remaining chlorido ligand can be replaced by another isocyanide ligand. Cationic complexes such as mer-[Tc(CNp-FArDarF2)3(CNnBu)3]+ (4a) or mer,trans-[Tc(CNp-FArDarF2)3(CNnBu)2(CNtBu)]+ (6) have been prepared in this way and isolated as their PF6- salts. mer,trans-[Tc(CNp-FArDarF2)3(CNnBu)2(CNtBu)](PF6) represents to the best of our knowledge the first transition-metal complex with three different isocyanides in its coordination sphere. Since the degree of the ligand exchange seems to be controlled both by the electronic and steric measures of the incoming isocyanides, we undertook similar reactions with the sterically less demanding p-fluorophenyl isocyanide, CNPhpF, which indeed readily led to the hexakis(isocyanide)technetium(I) cation through an exchange of all ligands in the staring materials [Tc2(CO)6(µ-Cl)3]- or fac-[Tc(CO)3(CNR)2Cl]. The influence of the substituents at the isocyanide ligands in such reactions has been reasoned with the density functional theory-derived electrostatic potential at the accessible surface of the corresponding isocyanide carbon atoms.

8.
ACS Nano ; 16(8): 12747-12754, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943141

RESUMO

Organic ligands are critical in determining the physiochemical properties of inorganic nanocrystals. However, precise nanocrystal surface modification is extremely difficult to achieve. Most research focuses on finding ligands that fully passivate the nanocrystal surface, with an emphasis on the supramolecular structure generated by the ligand shell. Inspired by molecular metal-coordination complexes, we devised an approach based on ligand anchoring groups that are flanked by encumbering organic substituents and are chemoselective for binding to nanocrystal corner, edge, and facet sites. Through experiment and theory, we affirmed that the surface-ligand steric pressures generated by these organic substituents are significant enough to impede binding to regions of low nanocurvature, such as nanocrystal facets, and to promote binding to regions of high curvature such as nanocrystal edges.

10.
Angew Chem Int Ed Engl ; 61(33): e202206353, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735910

RESUMO

Metal-organic frameworks (MOFs) are crystalline, 2- and 3-dimensional coordination polymers formed by bonding interactions between metals and multitopic organic ligands. These are typically formed using hard Lewis basic organic ligands with high oxidation state metal ions. The use of low-valent metals as structural elements in MOFs is far less common, despite the widespread use of such metals for catalysis, luminescence, and other applications. This Minireview focuses on recent advances in the field of low-valent MOFs and offers a perspective on the future development of these materials.

11.
Science ; 375(6587): 1393-1397, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324298

RESUMO

The diagonal relationship in the periodic table between phosphorus and carbon has set an expectation that the triple-bonded diatomic diphosphorus molecule (P2) should more closely mimic the attributes of acetylene (HC≡CH) rather than its group 15 congener dinitrogen (N2). Although acetylene has well-documented coordination chemistry with mononuclear transition metals, coordination complexes that feature P2 bound to a single metal center have remained elusive. We report the isolation and x-ray crystallographic characterization of a mononuclear iron complex featuring P2 coordination in a side-on, η2-binding mode. An analogous η2-bound bis-timethylsilylacetylene iron complex is reported for comparison. Nuclear magnetic resonance, infrared, and Mössbauer spectroscopic analysis-in conjunction with density functional theory calculations-demonstrate that η2-P2 and η2-acetylene ligands exert a similar electronic demand on mononuclear iron centers but exhibit different reactivity profiles.

12.
Inorg Chem ; 60(16): 12545-12554, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34347461

RESUMO

Mixed-metal solid-state framework materials are emerging candidates for advanced applications in catalysis and chemical separations. Traditionally, the syntheses of mixed-metal framework systems rely on postsynthetic ion exchange, metalloligands, or metal-deposition techniques for the incorporation of a second metal within a framework material. However, these methods are often incompatible with the incorporation of low-valent metal centers, which preferentially bind to electronically "soft" ligands according to the tenets of hard/soft acid/base theory. Here we present the electronically differentiated isocyanide/carboxylate heteroditopic linker ligand 1,4-CNArMes2C6H4CO2H (TIBMes2H; TIB = terphenyl isocyanide benzoate; ArMes2 = 2,6-(2,4,6-Me3C6H2)2C6H2), which is capable of selective binding of low-valent metals via the isocyano group and complexation of hard Lewis acidic metals through the carboxylate unit. This heteroditopic ligand also possesses an encumbering m-terphenyl backbone at the isocyanide function to foster coordinative unsaturation. The treatment of TIBMes2H with [Cu(NCMe)4]PF6 in a 3:1 ratio results in preferential binding of the isocyanide group to the Cu(I) center as assayed by multinuclear NMR and IR spectroscopies. IR spectroscopy also provides strong evidence for the formation of a copper(I) tris(isocyanide) complex, wherein the carboxylic acid group remains unperturbed. The addition of TIBMes2 to [Cu(NCMe)4]PF6 in a 4:1 ratio results in crystallization of the hydrogen-bonding network, [Cu(TIBMes2H)4]PF6, in which the formation of R22(8) hydrogen bonds results in a 7-fold interpenetrated diamondoid lattice structure. The preassembly of a copper(I) tris(isocyanide) complex using TIBMes2H, followed by deprotonation and the introduction of ZnCl2, generates a novel and unusual zwitterionic solid-state phase (denoted as Cu/Zn-ISOCN-5; ISOCN = isocyanide coordination network) consisting of a coordinatively unsaturated [Cu(CNR)3]+ cationic secondary building unit (SBU) and an anionic, paddlewheel-type Zn(II)-based SBU of the formulation [Cl2Zn2(O2CR)3]-. Inductively coupled plasma mass spectrometry analysis provided firm evidence for a 2:1 Zn-to-Cu ratio in the network, thereby indicating that the isocyanide and carboxylate groups selectively bind soft and hard Lewis acidic metal centers, respectively. The extended structure of Cu/Zn-ISOCN-5 is a densely packed, noninterpenetrated AB-stacked layer network with modest surface area. However, it is thermally robust, and its formation and compositional integrity validate the use of an electronically differentiated linker for the formation of mixed-metal frameworks incorporating low-valent metal centers.

13.
Inorg Chem ; 59(17): 11868-11878, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32813502

RESUMO

Isocyanide coordination networks (ISOCNs), which consist of multitopic isocyanide linker groups and transition-metal-based secondary building units (SBUs), are a promising class of organometallic framework materials for the inclusion of low-valent metal centers as primary structural components. Previously, it was demonstrated that the ditopic m-terphenyl isocyanide ligand, [CNArMes2]2 (ArMes2 = 2,6-(2,4,6-Me3C6H2)2C6H3), could provide single-metal node frameworks based on Cu(I) and Ni(0) centers. However, the relatively short linker length in [CNArMes2]2 precluded the formation of networks with significant porosity. Here, it is shown that expansion of the [CNArMes2]2 scaffold with a central phenylene spacer allows for the formation of a robust Cu(I)-based framework with a distinct and solvent accessible channel structure. This new framework, denoted Cu-ISOCN-4, is prepared as single-crystalline samples from a solvothermal reaction between [Cu(NCMe)4]PF6 and expanded linker 1,4-(CNArMes2)2C6H4. Crystallographic characterization of Cu-ISOCN-4 revealed mononuclear [Cu(THF)(CNR)3]+ structural nodes. The expanded diisocyanide linker results in fourfold interpenetrated (6,3) internal morphology. However, interpenetration in Cu-ISOCN-4 results in discrete layer domains, each of which possesses well-defined 29 × 19 Å channels along the crystallographic b axis. Thermogravimetric analysis on Cu-ISOCN-4 revealed THF solvent loss from the channels between 100-200 °C and dissociation of the Cu-coordinated THF ligand at 290 °C. The overall integrity of the network remains intact up to 400 °C, thereby signifying the robust nature of materials produced from metal-isocyanide M-C linkages. Aqueous stability studies revealed that Cu-ISOCN-4 remains chemically resistant to exposure to liquid water for several days. In addition, ligand exchange studies in both THF and aqueous solution demonstrate that the Cu-coordinated THF group in Cu-ISOCN-4 can be readily substituted with pyridine. This ligand exchange process occurs via single-crystal-to-single-crystal transformations and can also be readily monitored by infrared spectroscopy.

14.
Chem Commun (Camb) ; 56(51): 7009-7012, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32441735

RESUMO

The mixed isocyanide/carbonyl complexes cis- and trans-[Re(CO)3Br(CNArDipp2)2] (ArDipp2 = 2,6-(2,6-(i-Pr)2C6H3)2C6H3) can be synthesized from reactions of [Re(CO)5Br] and CNArDipp2 depending on the conditions applied. Reduction of the neutral Re(i) species gives the monoanionic complex [Re(CO)3(CNArDipp2)2]- or the neutral [Re(CO)3(CNArDipp2)2], which contain rhenium in the formal oxidation states "-1" and "0", respectively.

15.
J Am Chem Soc ; 141(38): 15003-15007, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31492053

RESUMO

Despite its utility as an oxygen-atom transfer reagent for transition metals, nitrous oxide (N2O) is a notoriously poor ligand, and its coordination chemistry has been limited to a few terminal, end-on κ1-N complexes. Here, the synthesis of a mononuclear cobalt complex possessing a side-on-bound N2O molecule is reported. Structural characterization, IR spectroscopy, and DFT calculations support an η2-N,N binding mode for binding of N2O to the cobalt center.

16.
Angew Chem Int Ed Engl ; 58(43): 15329-15333, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31418523

RESUMO

Relative to other cyclic poly-phosphorus species (that is, cyclo-Pn ), the planar cyclo-P4 group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4 -P4 complexes are presented that can be viewed as the simple coordination of the [cyclo-P4 ]2- dianion to a neutral metal fragment. Treatment of the neutral, molybdenum cyclo-P4 complexes Mo(η4 -P4 )I2 (CO)(CNArDipp2 )2 and Mo(η4 -P4 )(CO)2 (CNArDipp2 )2 with KC8 produces the dianionic, three-legged piano stool complexes, [Mo(η4 -P4 )(CO)(CNArDipp2 )2 ]2- and [Mo(η4 -P4 )(CO)2 (CNArDipp2 )]2- , respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6 -benzene complex (η6 -C6 H6 )Mo(CO)3 regarding the metal-center valence state and electronic population of the planar-cyclic ligand π system.

17.
Science ; 363(6432): 1203-1205, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872521

RESUMO

Boron monofluoride (BF) is a diatomic molecule with 10 valence electrons, isoelectronic to carbon monoxide (CO). Unlike CO, which is a stable molecule at room temperature and readily serves as both a bridging and terminal ligand to transition metals, BF is unstable below 1800°C in the gas phase, and its coordination chemistry is substantially limited. Here, we report the isolation of the iron complex Fe(BF)(CO)2(CNArTripp2)2 [ArTripp2, 2,6-(2,4,6-(i-Pr)3C6H2]2C6H3; i-Pr, iso-propyl], featuring a terminal BF ligand. Single-crystal x-ray diffraction as well as nuclear magnetic resonance, infrared, and Mössbauer spectroscopic studies on Fe(BF)(CO)2(CNArTripp2)2 and the isoelectronic dinitrogen (N2) and CO complexes Fe(N2)(CO)2(CNArTripp2)2 and Fe(CO)3(CNArTripp2)2 demonstrate that the terminal BF ligand possesses particularly strong σ-donor and π-acceptor properties. Density functional theory and electron-density topology calculations support this conclusion.

18.
Angew Chem Int Ed Engl ; 58(6): 1779-1783, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30370975

RESUMO

Elemental white phosphorus (P4 ) is well recognized as a critical precursor to organophosphorus compounds. However, regulatory constraints stemming from the toxic and pyrophoric nature of white phosphorus have significantly limited its accessibility. Herein is described a new approach to white phosphorus storage and release based on a unique example of photolytic reductive elimination of the tetrahedral P4 molecule from a mononuclear cyclo-P4 molybdenum complex. The latter functions as an air-stable, chemically-deactivated source of white phosphorus. The system features efficient photo-release of white phosphorus using inexpensive violet LED sources. Additionally, high-yield recapture of unspent white phosphorus by the molybdenum center can be achieved by post-photolysis heating at convenient temperatures.

19.
J Am Chem Soc ; 140(26): 8100-8104, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29906387

RESUMO

Reported here is the isolation of a dianionic cobalt terminal carbyne derived from chemical reduction of an encumbering isocyanide ligand. Crystallographic, spectroscopic and computational data reveal that this carbyne possesses a low-valent cobalt center with an extensively filled d-orbital manifold. This electronic character renders the cobalt center the primary site of nucleophilicity upon reaction with protic substrates and silyl electrophiles. However, reactions with internal alkynes result in [2+2] cycloaddition with the carbyne carbon to form a new C-C bond.

20.
Angew Chem Int Ed Engl ; 57(40): 13057-13061, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719103

RESUMO

Multimetallic clusters have long been investigated as molecular surrogates for reactive sites on metal surfaces. In the case of the µ4 -nitrido cluster [Fe4 (µ4 -N)(CO)12 ]- , this analogy is limited owing to the electron-withdrawing effect of carbonyl ligands on the iron nitride core. Described here is the synthesis and reactivity of [Fe4 (µ4 -N)(CO)8 (CNArMes2 )4 ]- , an electron-rich analogue of [Fe4 (µ4 -N)(CO)12 ]- , where the interstitial nitride displays significant nucleophilicity. This characteristic enables rational expansion with main-group and transition-metal centers to yield unsaturated sites. The resulting clusters display surface-like reactivity through coordination-sphere-dependent atom rearrangement and metal-metal cooperativity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...