Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 174034, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885716

RESUMO

Gold cyanidation facilities in the Arequipa Region of Peru are challenged by the availability and quality of water for processing in an arid environment. The facilities reuse decant water which recycles residual cyanide but also undesirable constituents. To understand the impact of intensive water recycling on cyanide and metals concentrations, we collected barren water, decant water, and tailings samples from six gold cyanidation facilities with ore capacities of 10-430 tons per day. Processing facilities in Arequipa recycle all effluents, with decant waters making up 58 ± 11 % of process waters. Decant water contained non-target metals: copper (394 ± 161 mg/L), iron (59 ± 34 mg/L), and zinc (74 ± 42 mg/L). In addition, decant water mean free and complexed cyanide concentrations were 534 ± 129 mg/L and 805 ± 297 mg/L, respectively. Complexed cyanide concentrations remained more constant than free cyanide concentrations with 786 ± 299 mg/L for barren water and 805 ± 297 mg/L for decant water. Cyanide mass balances showed between 21 % and 42 % of unaccounted free cyanide from the start of gold cyanidation and discharge to the tailings storage facility (TSF). Free cyanide estimated losses due to volatilization were 0.8 kg and 2.5 kg of hydrogen cyanide per ton of ore processed at barren water pH of 10.1 and 9.7. Together these results indicate two acute hazards: 1) volatilization of free cyanide during processing and 2) loading and retention of cyanides and metals into TSFs. This study elucidates the extent of uncontrolled vapor phase cyanide release during gold processing operation and contaminant concentrations in the tailings storage facilities. The data highlights the need for improvement oversight, accountability, and regulation of gold processing facilities practicing intensive recycling and zero discharge.

2.
Environ Sci Technol ; 58(5): 2502-2513, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277687

RESUMO

Wildfires at the wildland-urban interface (WUI) are increasing in frequency and intensity, driven by climate change and anthropogenic ignitions. Few studies have characterized the variability in the metal content in ash generated from burned structures in order to determine the potential risk to human and environmental health. Using inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed leachable trace metal concentration in soils and ash from structures burned by the Marshall Fire, a WUI fire that destroyed over 1000 structures in Boulder County, Colorado. Acid digestion revealed that ash derived from structures contained 22 times more Cu and 3 times more Pb on average than surrounding soils on a mg/kg basis. Ash liberated 12 times more Ni (mg/kg) and twice as much Cr (mg/kg) as soils in a water leach. By comparing the amount of acid-extractable metals to that released by water and simulated epithelial lung fluid (SELF), we estimated their potential for environmental mobility and human bioaccessibility. The SELF leach showed that Cu and Ni were more bioaccessible (mg of leachable metal/mg of acid-extractable metal) in ash than in soils. These results suggest that structure ash is an important source of trace metals that can negatively impact the health of both humans and the environment.


Assuntos
Metais Pesados , Oligoelementos , Incêndios Florestais , Humanos , Oligoelementos/análise , Metais/análise , Solo/química , Água , Metais Pesados/química
3.
Water Environ Res ; 95(12): e10957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38129948

RESUMO

A transition from inefficient aerobic wastewater treatment methods to sustainable approaches is needed. Anaerobic bioreactors are a viable solution as they consume less energy, reduce biosolid production, and provide a source of renewable methane-rich biogas. A barrier to widespread implementation of anaerobic technologies is the lack of design guidance, especially in colder climates. This study bridges this knowledge gap by deriving design principles from three long-running pilot-scale anaerobic baffled reactors (ABRs) operating under psychrophilic conditions. The ABRs removed an average of 56% and 80% chemical oxygen demand (COD) and suspended solids, respectively, with a methane yield of 0.21 L CH4 /g CODrem . Methane production may be improved with increased influent sCOD concentrations and decreased sulfate concentrations. Results suggest that ABRs can treat a range of wastewater strengths accompanied by useable methane production. Despite sharing location, temperature, and HRT, the ABRs displayed distinct performances, highlighting the significance of influent wastewater characteristics. PRACTITIONER POINTS: ABRs achieved 56% and 80% removal efficiencies for COD and suspended solids. Average biogas was 63% methane, and methane yield was 0.21 L CH4 /g CODrem . Volumetric methane production was positively correlated with the influent sCOD/sulfate ratio and negatively correlated with influent sulfate loading.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Temperatura , Biocombustíveis , Colorado , Reatores Biológicos , Metano , Sulfatos
4.
Environ Sci Technol ; 52(18): 10500-10510, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30130383

RESUMO

The objective of this study was to evaluate the lifecycle impacts of anaerobic primary treatment of domestic wastewater using anaerobic baffled reactors (ABRs) coupled with aerobic secondary treatment relative to conventional wastewater and sludge/biosolids treatment systems through the application of wastewater treatment modeling and three lifecycle-based analyses: environmental lifecycle assessment, net energy balance, and lifecycle costing. Data from two pilot-scale ABRs operated under ambient wastewater temperatures were used to model the anaerobic primary treatment process. To address uncertain parameters in the scale-up of pilot-scale anaerobic reactor data, uncertainty analysis and Monte Carlo simulation were employed. This study demonstrates that anaerobic primary treatment of domestic wastewater using ABRs can be incorporated with existing aerobic treatment strategies to reduce aeration demand, reduce sludge production, and increase energy generation. The net result of coupling anaerobic primary treatment with aerobic secondary treatment is a more favorable net energy balance, reduced environmental impacts in most examined categories, and lower lifecycle costs relative to conventional treatment configurations; however, the removal and/or capture of dissolved methane is required to reduce global warming impacts and increase on-site energy generation. With further study, anaerobic primary treatment can be a path forward for energy-positive wastewater treatment.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
5.
Genome Announc ; 4(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26769931

RESUMO

Sulfate-reducing bacteria are important players in the global sulfur cycle and of considerable commercial interest. The draft genome sequence of a sulfate-reducing bacterium of the family Desulfobacteraceae, assembled from a sulfate-reducing bioreactor metagenome, indicates that heavy-metal- and acid-resistance traits of this organism may be of importance for its application in acid mine drainage mitigation.

6.
Water Res ; 87: 494-502, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26414605

RESUMO

A four-cell anaerobic baffled reactor (ABR) was operated for two years treating raw municipal wastewater at ambient water and air temperatures of 12-23 °C and -10 to 35 °C, respectively. The 1000-L pilot reactor operated at a 12-h hydraulic residence time and was located in the Headworks building of the Plum Creek Water Reclamation Authority. The average influent was TSS = 510 ± 400 mg/L, BOD5 = 320 ± 80 mg/L and the average removal of TSS and BOD5 was 83 ± 10% and 47 ± 15%, respectively. The TSS and BOD removal exceeded that of conventional primary clarification, with no wasting of the settled solids over the two-years and stoichiometric production of methane. The estimated energy content of the biogas produced per unit volume of wastewater treated averaged 0.45 kWh/m(3). The TSS and total COD removal in the first cell averaged 75 ± 15% and 43 ± 14%, respectively, but methane production was only 20% of the total observed for the full ABR. The performance of the ABR relative to the extent of solids hydrolysis and methane production can be varied by the number of cells and hydraulic residence time. The anaerobic baffled reactor is an energy-positive technology that can be used for biologically enhanced primary treatment of raw municipal wastewater in cold climates.


Assuntos
Biocombustíveis/análise , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Anaerobiose , Reatores Biológicos , Projetos Piloto , Temperatura , Gerenciamento de Resíduos
7.
Artigo em Inglês | MEDLINE | ID: mdl-25560263

RESUMO

In this study, the abundance and sequences of the amoA gene in ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were defined in three wastewater treatment plants using activated sludge with biological nitrogen removal in different countries: Thailand, United States of America (USA), and Japan. Quantitative real-time polymerase chain reaction (PCR) and PCR coupled with denaturing gradient gel electrophoresis were used to find the comparative abundance and identity of AOB and AOA. The conditions at the Phuket WWTP in Thailand promoted the dominance of AOA amoA genes over AOB amoA genes, while conditions at the WWTPs in Japan and USA promoted growth of AOB. Three parameters that may have contributed to the AOA dominance in Phuket were longer SRT, higher temperature, and higher pH. The Phuket WWTP is a unique system that can be used to better understand the conditions that promote AOA growth and dominance over AOB. In addition, analysis of operational data in conjunction with AOA and AOB community structure from the Phuket WWTP may elucidate advantages of AOA in meeting stricter treatment standards.


Assuntos
Amônia/metabolismo , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Archaea/classificação , Bactérias/classificação , Bactérias/isolamento & purificação , Carga Bacteriana , Biota , Japão , Oxirredução , Tailândia , Estados Unidos
8.
Water Res ; 39(18): 4537-51, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16213004

RESUMO

Permeable reactive barrier (PRB) technology, in which sulfate-reducing bacteria (SRB) facilitate precipitation of metal sulfides, is a promising approach for remediation of sulfate- and metal-laden mine drainage. While PRBs are easily established, they often decline for reasons not well understood. SRB depend on or compete with multiple dynamic microbial populations within a PRB; as a result, performance depends on the changing PRB chemical composition and on succession and competition within the microbial community. To investigate these interactions, we constructed and monitored eight bench-scale PRBs to define periods of establishment, performance, and decline. We then conducted short-term batch studies, using substrate-supplemented column materials, on Days 0 (pre-establishment), 27 (establishment), 41 (performance), and 99 (decline) to reveal potential activities of cellulolytic bacteria, fermenters + anaerobic respirers, SRB, and methanogens. PRBs showed active sulfate reduction, with sulfate removal rates (SRR) of approximately 1-3 mol/m3/d, as well as effective removal of Zn2+. Potential activities of fermentative + anaerobic respiratory bacteria were initially high but diminished greatly during establishment and dropped further during performance and decline. In contrast, potential SRB activity rose during establishment, peaked during performance, and diminished as performance declined. Potential methanogen activity was low; in addition, SRB-methanogen substrate competition was shown not to limit SRB activity. Cellulolytic bacteria showed no substrate limitation at any time. However, fermenters experienced substrate limitation by Day 0, SRB by Day 27, and methanogens by Day 41, showing the dependence of each group on upstream populations to provide substrates. All potential activities, except methanogenesis, were ultimately limited by cellulose hydrolysis; in addition, all potential activities except methanogenesis declined substantially by Day 99, showing that long-term substrate deprivation strongly diminished the intrinsic capacity of the PRB community to perform.


Assuntos
Mineração , Bactérias Redutoras de Enxofre/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Álcalis/química , Biodegradação Ambiental , Precipitação Química , Fermentação , Hidrogênio/química , Cinética , Metais Pesados/química , Metais Pesados/isolamento & purificação , Metais Pesados/metabolismo , Viabilidade Microbiana , Sulfatos/química , Sulfatos/isolamento & purificação , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento
9.
Environ Sci Technol ; 39(9): 3215-25, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15926572

RESUMO

The influence of decomposing organic solids on sulfate (S04(2-)) reduction rates for metals precipitation in sulfate-reducing systems, such as in bioreactors and permeable reactive barriers for treatment of acid mine drainage, is modeled. The results are evaluated by comparing the model simulations with published experimental data for two single-substrate and two multiple-substrate batch equilibrium experiments. The comparisons are based on the temporal trends in SO4(2-), ferrous iron (Fe2+), and hydrogen sulfide (H2S) concentrations, as well as on rates of sulfate reduction. The temporal behaviors of organic solid materials, dissolved organic substrates, and different bacterial populations also are simulated. The simulated results using Contois kinetics for polysaccharide decomposition, Monod kinetics for lactate-based sulfate reduction, instantaneous or kinetically controlled precipitation of ferrous iron mono-sulfide (FeS), and partial volatilization of H2S to the gas phase compare favorably with the experimental data. When Contois kinetics of polysaccharide decomposition is replaced by first-order kinetics to simulate one of the single-substrate batch experiments, a comparatively poorer approximation of the rates of sulfate reduction is obtained. The effect of sewage sludge in boosting the short-term rate of sulfate reduction in one of the multiple-substrate experiments also is approximated reasonably well. The results illustrate the importance of the type of kinetics used to describe the decomposition of organic solids on metals precipitation in sulfate-reducing systems as well as the potential application of the model as a predictive tool for assisting in the design of similar biochemical systems.


Assuntos
Ferro/química , Modelos Teóricos , Sulfatos/química , Purificação da Água/métodos , Reatores Biológicos , Precipitação Química , Cinética , Membranas Artificiais , Mineração , Permeabilidade , Esgotos/química , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...