Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36851533

RESUMO

The exceptional impact of the COVID-19 pandemic has stimulated an intense search for antiviral molecules. Host-targeted antiviral molecules have the potential of presenting broad-spectrum antiviral activity and are also considered as less likely to select for resistant viruses. In this study, we investigated the antiviral activity exerted by AM-001, a specific pharmacological inhibitor of EPAC1, a host exchange protein directly activated by cyclic AMP (cAMP). The cAMP-sensitive protein, EPAC1 regulates various physiological and pathological processes but its role in SARS-CoV-2 and influenza A virus infection has not yet been studied. Here, we provide evidence that the EPAC1 specific inhibitor AM-001 exerts potent antiviral activity against SARS-CoV-2 in the human lung Calu-3 cell line and the African green monkey Vero cell line. We observed a concentration-dependent inhibition of SARS-CoV-2 infectious viral particles and viral RNA release in the supernatants of AM-001 treated cells that was not associated with a significant impact on cellular viability. Furthermore, we identified AM-001 as an inhibitor of influenza A virus in Calu-3 cells. Altogether these results identify EPAC1 inhibition as a promising therapeutic target against viral infections.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Humanos , Antivirais/farmacologia , Chlorocebus aethiops , Influenza Humana/tratamento farmacológico , Pandemias , RNA Viral , SARS-CoV-2 , Replicação Viral
2.
Microbiol Spectr ; 11(1): e0422922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625654

RESUMO

H5N8 high-pathogenicity avian influenza virus (HPAIV) of clade 2.3.4.4B, which circulated during the 2016 epizootics in Europe, was notable for causing different clinical signs in ducks and chickens. The clinical signs preceding death were predominantly neurological in ducks versus respiratory in chickens. To investigate the determinants for the predominant neurological signs observed in ducks, we infected duck and chicken primary cortical neurons. Viral replication was identical in neuronal cultures from both species. In addition, we did not detect any major difference in the immune and inflammatory responses. These results suggest that the predominant neurological involvement of H5N8 HPAIV infection in ducks could not be recapitulated in primary neuronal cultures. In vivo, H5N8 HPAIV replication in ducks peaked soon after infection and led to an early colonization of the central nervous system. In contrast, viral replication was delayed in chickens but ultimately burst in the lungs of chickens, and the chickens died of respiratory distress before brain damage became significant. Consequently, the immune and inflammatory responses in the brain were significantly higher in duck brains than those in chickens. Our study thus suggests that early colonization of the central nervous system associated with prolonged survival after the onset of virus replication is the likely primary cause of the sustained inflammatory response and subsequent neurological disorders observed in H5N8 HPAIV-infected ducks. IMPORTANCE The severity of high-pathogenicity avian influenza virus (HPAIV) infection has been linked to its ability to replicate systemically and cause lesions in a variety of tissues. However, the symptomatology depends on the host species. The H5N8 virus of clade 2.3.4.4B had a pronounced neurotropism in ducks, leading to severe neurological disorders. In contrast, neurological signs were rarely observed in chickens, which suffered mostly from respiratory distress. Here, we investigated the determinants of H5N8 HPAIV neurotropism. We provide evidence that the difference in clinical signs was not due to a difference in neurotropism. Our results rather indicate that chickens died of respiratory distress due to intense viral replication in the lungs before viral replication in the brain could produce significant lesions. In contrast, ducks better controlled virus replication in the lungs, thus allowing the virus to replicate for a sufficient duration in the brain, to reach high levels, and to cause significant lesions.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Síndrome do Desconforto Respiratório , Animais , Galinhas , Patos , Vírus da Influenza A Subtipo H5N8/fisiologia , Virulência
3.
J Virol ; 96(1): e0136621, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613804

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.


Assuntos
Galinhas , Suscetibilidade a Doenças , Patos , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Biomarcadores , Biópsia , Células Cultivadas , Coinfecção , Genótipo , Imuno-Histoquímica , Influenza Aviária/metabolismo , Influenza Aviária/patologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , RNA Viral , Especificidade da Espécie , Carga Viral , Virulência , Replicação Viral
4.
Front Immunol ; 12: 772550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868036

RESUMO

Current inactivated vaccines against influenza A viruses (IAV) mainly induce immune responses against highly variable epitopes across strains and are mostly delivered parenterally, limiting the development of an effective mucosal immunity. In this study, we evaluated the potential of intranasal formulations incorporating conserved IAV epitopes, namely the long alpha helix (LAH) of the stalk domain of hemagglutinin and three tandem repeats of the ectodomain of the matrix protein 2 (3M2e), as universal mucosal anti-IAV vaccines in mice and chickens. The IAV epitopes were grafted to nanorings, a novel platform technology for mucosal vaccination formed by the nucleoprotein (N) of the respiratory syncytial virus, in fusion or not with the C-terminal end of the P97 protein (P97c), a recently identified Toll-like receptor 5 agonist. Fusion of LAH to nanorings boosted the generation of LAH-specific systemic and local antibody responses as well as cellular immunity in mice, whereas the carrier effect of nanorings was less pronounced towards 3M2e. Mice vaccinated with chimeric nanorings bearing IAV epitopes in fusion with P97c presented modest LAH- or M2e-specific IgG titers in serum and were unable to generate a mucosal humoral response. In contrast, N-3M2e or N-LAH nanorings admixed with Montanide™ gel (MG) triggered strong specific humoral responses, composed of serum type 1/type 2 IgG and mucosal IgG and IgA, as well as cellular responses dominated by type 1/type 17 cytokine profiles. All mice vaccinated with the [N-3M2e + N-LAH + MG] formulation survived an H1N1 challenge and the combination of both N-3M2e and N-LAH nanorings with MG enhanced the clinical and/or virological protective potential of the preparation in comparison to individual nanorings. Chickens vaccinated parenterally or mucosally with N-LAH and N-3M2e nanorings admixed with Montanide™ adjuvants developed a specific systemic humoral response, which nonetheless failed to confer protection against heterosubtypic challenge with a highly pathogenic H5N8 strain. Thus, while the combination of N-LAH and N-3M2e nanorings with Montanide™ adjuvants shows promise as a universal mucosal anti-IAV vaccine in the mouse model, further experiments have to be conducted to extend its efficacy to poultry.


Assuntos
Epitopos/imunologia , Imunidade nas Mucosas/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Antivirais/imunologia , Galinhas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Substâncias Protetoras/administração & dosagem , Análise de Sobrevida , Vacinação/métodos
5.
PLoS Pathog ; 17(8): e1009427, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370799

RESUMO

Impaired type I interferons (IFNs) production or signaling have been associated with severe COVID-19, further promoting the evaluation of recombinant type I IFNs as therapeutics against SARS-CoV-2 infection. In the Syrian hamster model, we show that intranasal administration of IFN-α starting one day pre-infection or one day post-infection limited weight loss and decreased viral lung titers. By contrast, intranasal administration of IFN-α starting at the onset of symptoms three days post-infection had no impact on the clinical course of SARS-CoV-2 infection. Our results provide evidence that early type I IFN treatment is beneficial, while late interventions are ineffective, although not associated with signs of enhanced disease.


Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Interferon Tipo I/administração & dosagem , Administração Intranasal , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Mesocricetus , SARS-CoV-2
6.
Sci Rep ; 11(1): 5928, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723295

RESUMO

Highly Pathogenic Avian Influenza viruses (HPAIVs) display a tissue pantropism, which implies a possible spread in feathers. HPAIV detection from feathers had been evaluated for H5N1 or H7N1 HPAIVs. It was suggested that viral RNA loads could be equivalent or higher in samples of immature feather compared to tracheal (TS) or cloacal swabs (CS). We investigated the suitability of feathers for the detection of clade 2.3.4.4b H5N8 HPAIV in ducks and geese field samples. In the six H5N8 positive flocks that were included in this study, TS, CS and immature wing feathers were taken from at least 10 birds. Molecular loads were then estimated using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) targetting H5 and M genes. In all flocks, viral loads were at least equivalent between feather and swab samples and in most cases up to 103 higher in feathers. Bayesian modelling confirmed that, in infected poultry, RT-qPCR was much more likely to be positive when applied on a feather sample only (estimated sensitivity between 0.89 and 0.96 depending on the positivity threshold) than on a combination of a tracheal and a cloacal swab (estimated sensitivity between 0.45 and 0.68 depending on the positivity threshold). Viral tropism and lesions in feathers were evaluated by histopathology and immunohistochemistry. Epithelial necrosis of immature feathers and follicles was observed concurrently with positive viral antigen detection and leukocytic infiltration of pulp. Accurate detection of clade 2.3.4.4b HPAIVs in feather samples were finally confirmed with experimental H5N8 infection on 10-week-old mule ducks, as viral loads at 3, 5 and 7 days post-infection were higher in feathers than in tracheal or cloacal swabs. However, feather samples were associated with lower viral loads than tracheal swabs at day 1, suggesting better detectability of the virus in feathers in the later course of infection. These results, based on both field cases and experimental infections, suggest that feather samples should be included in the toolbox of samples for detection of clade 2.3.4.4b HPAI viruses, at least in ducks and geese.


Assuntos
Patos , Gansos , Genótipo , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/virologia , Tropismo Viral , Animais , Teorema de Bayes , Biópsia , França/epidemiologia , Imuno-Histoquímica , Influenza Aviária/diagnóstico , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/virologia , Virulência
7.
Virus Evol ; 7(2): veab093, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35299790

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) evolve from low pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes. This evolution is characterized by the acquisition of a multi-basic cleavage site (MBCS) motif in the hemagglutinin (HA) that leads to an extended viral tropism and severe disease in poultry. One key unanswered question is whether the risk of transition to HPAIVs is similar for all LPAIVs H5 or H7 strains, or whether specific determinants in the HA sequence of some H5 or H7 LPAIV strains correlate with a higher risk of transition to HPAIVs. Here, we determined if specific features of the conserved RNA stem-loop located at the HA cleavage site-encoding region could be detected along the LPAIV to HPAIV evolutionary pathway. Analysis of the thermodynamic stability of the predicted RNA structures showed no specific patterns common to HA sequences leading to HPAIVs and distinct from those remaining LPAIVs. However, RNA structure clustering analysis revealed that most of the American lineage ancestors leading to H7 emergences via recombination shared the same viral RNA (vRNA) structure topology at the HA1/HA2 boundary region. Our study thus identified predicted secondary RNA structures present in the HA of H7 viruses, which could promote genetic recombination and acquisition of a multibasic cleavage site motif (MBCS).

8.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32102887

RESUMO

Ducks usually show little or no clinical signs following highly pathogenic avian influenza virus infection. In order to analyze whether the microbiota could contribute to the control of influenza virus replication in ducks, we used a broad-spectrum oral antibiotic treatment to deplete the microbiota before infection with a highly pathogenic H5N9 avian influenza virus. Antibiotic-treated ducks and nontreated control ducks did not show any clinical signs following H5N9 virus infection. We did not detect any significant difference in virus titers neither in the respiratory tract nor in the brain nor spleen. However, we found that antibiotic-treated H5N9 virus-infected ducks had significantly increased intestinal virus excretion at days 3 and 5 postinfection. This was associated with a significantly decreased antiviral immune response in the intestine of antibiotic-treated ducks. Our findings highlight the importance of an intact microbiota for an efficient control of avian influenza virus replication in ducks.IMPORTANCE Ducks are frequently infected with avian influenza viruses belonging to multiple subtypes. They represent an important reservoir species of avian influenza viruses, which can occasionally be transmitted to other bird species or mammals, including humans. Ducks thus have a central role in the epidemiology of influenza virus infection. Importantly, ducks usually show little or no clinical signs even following infection with a highly pathogenic avian influenza virus. We provide evidence that the microbiota contributes to the control of influenza virus replication in ducks by modulating the antiviral immune response. Ducks are able to control influenza virus replication more efficiently when they have an intact intestinal microbiota. Therefore, maintaining a healthy microbiota by limiting perturbations to its composition should contribute to the prevention of avian influenza virus spread from the duck reservoir.


Assuntos
Influenza Aviária/imunologia , Influenza Aviária/microbiologia , Influenza Aviária/terapia , Influenza Aviária/virologia , Microbiota/fisiologia , Replicação Viral/fisiologia , Animais , Animais Selvagens/virologia , Antibacterianos/uso terapêutico , Antivirais , Patos/microbiologia , Patos/virologia , Células Epiteliais , Humanos , Íleo/patologia , Vírus da Influenza A/imunologia , Intestinos/microbiologia , Pulmão/patologia , Microbiota/efeitos dos fármacos , Poli I-C/uso terapêutico , Sistema Respiratório/virologia , Carga Viral
9.
J Gen Virol ; 99(9): 1286-1300, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30067174

RESUMO

Herpesviruses have a lifecycle consisting of successive lytic, latent and reactivation phases. Only three infected cell proteins (ICPs) have been described for the oncogenic Marek's disease virus (or Gallid herpes virus 2, GaHV-2): ICP4, ICP22 and ICP27. We focus here on ICP22, confirming its cytoplasmic location and showing that ICP22 is expressed during productive phases of the lifecycle, via a bicistronic transcript encompassing the US10 gene. We also identified the unique promoter controlling ICP22 expression, and its core promoter, containing functional responsive elements including E-box, ETS-1 and GATA elements involved in ICP22 transactivation. ICP22 gene expression was weakly regulated by DNA methylation and activated by ICP4 or ICP27 proteins. We also investigated the function of GaHV-2 ICP22. We found that this protein repressed transcription from its own promoter and from those of IE ICP4 and ICP27, and the late gK promoter. Finally, we investigated posttranscriptional ICP22 regulation by GaHV-2 microRNAs. We found that mdv1-miR-M5-3p and -M1-5p downregulated ICP22 mRNA expression during latency, whereas, unexpectedly, mdv1-miR-M4-5p upregulated the expression of the protein ICP22, indicating a tight regulation of ICP22 expression by microRNAs.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Herpesvirus Galináceo 2/fisiologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Galinhas , Metilação de DNA , Regiões Promotoras Genéticas , Elementos de Resposta , Proteínas Virais/genética , Replicação Viral
10.
RNA Biol ; 13(12): 1310-1322, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27715458

RESUMO

Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organized into clusters. We used a viral model - the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron - to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3' splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5'-tailed mirtron. We have thus identified the first 5'-tailed mirtron within a cluster of miRNAs for which alternative splicing is directly associated with differential expression of the other miRNAs of the cluster, with an increase in intronic mdv1-miR-M8 expression and a decrease in expression of the exonic mdv1-miR-M7, and indirectly associated with regulation of the host transcript. According to the alternative 3SS used for the host intron splicing, the mdv1-miR-M6 is processed as a mirtron by the spliceosome, dispatching the other miRNAs of the cluster into intron and exon, or as a canonical miRNA by the Microprocessor complex. The viral mdv1-miR-M6 mirtron is the first mirtron described that can also follow the canonical pathway.


Assuntos
Processamento Alternativo , Mardivirus/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Galinhas/virologia , Regulação Viral da Expressão Gênica , Família Multigênica , RNA Viral/genética
11.
J Gen Virol ; 97(11): 2973-2988, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27655063

RESUMO

Marek's disease virus, or Gallid herpesvirus 2 (GaHV-2), is an avian alphaherpesvirus that induces T-cell lymphoma in chickens. During transcriptomic studies of the RL region of the genome, we characterized the 7.5 kbp gene of the ERL lncRNA (edited repeat-long, long non-coding RNA), which may act as a natural antisense transcript (NAT) of the major GaHV-2 oncogene meq and of two of the three miRNA clusters. During infections in vivo and in vitro, we detected hyperediting of the ERL lncRNA that appeared to be directly correlated with ADAR1 expression levels. The ERL lncRNA was expressed equally during the lytic and latent phases of infection and during viral reactivation, but its hyperediting increased only during the lytic infection of chicken embryo fibroblasts. We also showed that chicken ADAR1 expression was controlled by the JAK/STAT IFN-response pathway, through an inducible promoter containing IFN-stimulated response elements that were functional during stimulation with IFN-α or poly(I:C). Like the human and murine miR-155-5p, the chicken gga-miR-155-5p and the GaHV-2 analogue mdv1-miR-M4-5p deregulated this pathway by targeting and repressing expression of suppressor of cytokine signalling 1, leading to the upregulation of ADAR1. Finally, we hypothesized that the natural antisense transcript role of the ERL lncRNA could be disrupted by its hyperediting, particularly during viral lytic replication, and that the observed deregulation of the innate immune system by mdv1-miR-M4-5p might contribute to the viral cycle.


Assuntos
Adenosina Desaminase/metabolismo , Herpesvirus Galináceo 2/genética , Doença de Marek/enzimologia , Doença de Marek/virologia , Vírus Oncogênicos/genética , RNA Longo não Codificante/genética , RNA Viral/genética , Adenosina Desaminase/genética , Animais , Galinhas , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus Oncogênicos/fisiologia , Regiões Promotoras Genéticas , Edição de RNA , RNA Longo não Codificante/metabolismo , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...