Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 68(2): e12837, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33274482

RESUMO

Malawimonadida is a deep-level (arguably "kingdom-scale") lineage of eukaryotes whose phylogenetic affinities are uncertain but of great evolutionary interest, as the group is suspected to branch close to the root of the tree of eukaryotes. Part of the difficulty in placing Malawimonadida phylogenetically is its tiny circumscription: at present, it comprises only two described and one cultured but undescribed species, all of them are freshwater suspension-feeding nanoflagellates. In this study, we cultivated and characterised Imasa heleensis gen. nov., sp. nov. (Imasidae fam. nov.), the first marine malawimonad to be described. Light and electron microscopy observations show that Imasa is largely similar to other malawimonads, but more frequently adheres to the substrate, often by means of a pliable posterior extension. Phylogenetic analyses based on two ribosomal RNA genes and four translated protein-coding genes using three different taxon sets place Imasa as sister to the three freshwater malawimonad strains with strong support. Imasa's mitochondrial genome is circular-mapping and shows a similar gene complement to other known malawimonads. We conclude that Imasa represents an important expansion of the range of taxa available for future evolutionary study.


Assuntos
Eucariotos , Eucariotos/genética , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
2.
Evolution ; 74(8): 1788-1803, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32537736

RESUMO

As a dispersive lineage expands its distribution across a heterogeneous landscape, it leaves behind allopatric populations with varying degrees of geographic isolation that often differentiate rapidly. In the case of oceanic islands, even narrowly separated populations often differentiate, which seems contrary to the highly dispersive nature of the founding lineage. This pattern of highly dispersive lineages differentiating across narrow sea barriers has perplexed biologists for more than a century. We used two reduced-representation genomic datasets to examine the diversification of a recent, rapid geographic radiation, the white-eyes (Aves: Zosterops) of the Solomon Islands. We incorporated methods that targeted phylogenetic structure, population structure, and explicit tests for gene flow. Both datasets showed evidence of gene flow among species, but not involving the closely spaced islands in the New Georgia Group. Instead, gene flow has occurred among the larger islands in the archipelago, including those recently connected by land bridges as well as those isolated by large expanses of deep ocean. Populations separated by shallow seas, and connected by land bridges during glacial cycles, ranged from no differentiation to both phenotypic and genomic differentiation. These complex patterns of gene flow and divergence support a model of rapid geographic radiation in which lineages differentially evolve dispersal disparity and phenotypic differences.


Assuntos
Fluxo Gênico , Especiação Genética , Fenótipo , Aves Canoras/genética , Animais , Introgressão Genética , Variação Genética , Melanesia , Filogeografia , Isolamento Reprodutivo
3.
Nat Ecol Evol ; 2(4): 599-610, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483681

RESUMO

As the terrestrial human footprint continues to expand, the amount of native forest that is free from significant damaging human activities is in precipitous decline. There is emerging evidence that the remaining intact forest supports an exceptional confluence of globally significant environmental values relative to degraded forests, including imperilled biodiversity, carbon sequestration and storage, water provision, indigenous culture and the maintenance of human health. Here we argue that maintaining and, where possible, restoring the integrity of dwindling intact forests is an urgent priority for current global efforts to halt the ongoing biodiversity crisis, slow rapid climate change and achieve sustainability goals. Retaining the integrity of intact forest ecosystems should be a central component of proactive global and national environmental strategies, alongside current efforts aimed at halting deforestation and promoting reforestation.


Assuntos
Biodiversidade , Sequestro de Carbono , Mudança Climática , Conservação dos Recursos Naturais , Agricultura Florestal , Florestas
4.
Nat Ecol Evol ; 1(12): 1798-1806, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29062123

RESUMO

Monitoring and evaluation are central to ensuring that innovative, multi-scale, and interdisciplinary approaches to sustainability are effective. The development of relevant indicators for local sustainable management outcomes, and the ability to link these to broader national and international policy targets, are key challenges for resource managers, policymakers, and scientists. Sets of indicators that capture both ecological and social-cultural factors, and the feedbacks between them, can underpin cross-scale linkages that help bridge local and global scale initiatives to increase resilience of both humans and ecosystems. Here we argue that biocultural approaches, in combination with methods for synthesizing across evidence from multiple sources, are critical to developing metrics that facilitate linkages across scales and dimensions. Biocultural approaches explicitly start with and build on local cultural perspectives - encompassing values, knowledges, and needs - and recognize feedbacks between ecosystems and human well-being. Adoption of these approaches can encourage exchange between local and global actors, and facilitate identification of crucial problems and solutions that are missing from many regional and international framings of sustainability. Resource managers, scientists, and policymakers need to be thoughtful about not only what kinds of indicators are measured, but also how indicators are designed, implemented, measured, and ultimately combined to evaluate resource use and well-being. We conclude by providing suggestions for translating between local and global indicator efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental , Meio Social
5.
Mol Phylogenet Evol ; 110: 19-26, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28249741

RESUMO

We reconstruct the phylogeny of imperial pigeons (genus Ducula) using mitochondrial and nuclear sequence data. We evaluate the most likely biogeographic scenario for the evolution of this group that colonized many islands of the Pacific Ocean. The divergence time analysis suggests that the basal divergences within Ducula occurred more recently than in the fruit doves (genus Ptilinopus), a group that is also well diversified in Oceania. The imperial pigeons colonized the Melanesian region several times independently, and the diversification within this region led to several species in sympatry, in particular in the Bismarck archipelago. Central Polynesia was also colonized several times, first by a lineage during the Miocene that led to the large D. latrans, sister to the New Caledonian endemic D. goliath, then more recently by the widespread D. pacifica, during the Pleistocene. The phylogenetic pattern obtained with the extant Ducula species showed that the Eastern Polynesian endemics do not form a monophyletic group, with the Pacific Imperial Pigeon D. pacifica sister species with good support to the Polynesian Imperial Pigeon D. aurorae. However, the impact of recent anthropic extinctions has been important for the imperial pigeons, more than for the smaller fruit doves, suggesting that several Ducula lineages might be missing today.


Assuntos
Columbidae/classificação , Columbidae/genética , Filogenia , Filogeografia , Animais , Teorema de Bayes , Oceano Pacífico , Fatores de Tempo
6.
Environ Microbiol ; 18(12): 4549-4563, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27581800

RESUMO

The diversity of microbial eukaryotes was surveyed by environmental sequencing from tropical lagoon sites of the South Pacific, collected through the American Museum of Natural History (AMNH)'s Explore21 expedition to the Solomon Islands in September 2013. The sampled lagoons presented low nutrient concentrations typical of oligotrophic waters, but contained levels of chlorophyll a, a proxy for phytoplankton biomass, characteristic of meso- to eutrophic waters. Two 18S rDNA hypervariable sites, the V4 and V8-V9 regions, were amplified from the total of eight lagoon samples and sequenced on the MiSeq system. After assembly, clustering at 97% similarity, and removal of singletons and chimeras, a total of 2741 (V4) and 2606 (V8-V9) operational taxonomic units (OTUs) were identified. Taxonomic annotation of these reads, including phylogeny, was based on a combination of automated pipeline and manual inspection. About 18.4% (V4) and 13.8% (V8-V9) of the OTUs could not be assigned to any of the known eukaryotic groups. Of these, we focused on OTUs that were not divergent and possessed multiple sources of evidence for their existence. Phylogenetic analyses of these sequences revealed more than ten branches that might represent new deeply-branching lineages of microbial eukaryotes, currently without any cultured representatives or morphological information.


Assuntos
Eucariotos/classificação , Eucariotos/genética , Fitoplâncton/classificação , Sequência de Bases , Biomassa , Clorofila/análogos & derivados , Clorofila A , DNA Ribossômico/genética , Oceano Pacífico , Filogenia , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação
7.
Proc Biol Sci ; 283(1834)2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27412275

RESUMO

The independent evolution of similar traits across multiple taxa provides some of the most compelling evidence of natural selection. Little is known, however, about the genetic basis of these convergent or parallel traits: are they mediated by identical or different mutations in the same genes, or unique mutations in different genes? Using a combination of candidate gene and reduced representation genomic sequencing approaches, we explore the genetic basis of and the evolutionary processes that mediate similar plumage colour shared by isolated populations of the Monarcha castaneiventris flycatcher of the Solomon Islands. A genome-wide association study (GWAS) that explicitly controlled for population structure revealed that mutations in known pigmentation genes are the best predictors of parallel plumage colour. That is, entirely black or melanic birds from one small island share an amino acid substitution in the melanocortin-1 receptor (MC1R), whereas similarly melanic birds from another small island over 100 km away share an amino acid substitution in a predicted binding site of agouti signalling protein (ASIP). A third larger island, which separates the two melanic populations, is inhabited by birds with chestnut bellies that lack the melanic MC1R and ASIP allelic variants. Formal FST outlier tests corroborated the results of the GWAS and suggested that strong, directional selection drives the near fixation of the MC1R and ASIP variants across islands. Our results, therefore, suggest that selection acting on different mutations with large phenotypic effects can drive the evolution of parallel melanism, despite the relatively small population size on islands.


Assuntos
Proteína Agouti Sinalizadora/genética , Plumas/fisiologia , Pigmentação/genética , Receptor Tipo 1 de Melanocortina/genética , Aves Canoras/genética , Substituição de Aminoácidos , Animais , Estudos de Associação Genética , Ilhas , Melanesia , Mutação
8.
R Soc Open Sci ; 2(2): 140375, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26064600

RESUMO

Todiramphus chloris is the most widely distributed of the Pacific's 'great speciators'. Its 50 subspecies constitute a species complex that is distributed over 16 000 km from the Red Sea to Polynesia. We present, to our knowledge, the first comprehensive molecular phylogeny of this enigmatic radiation of kingfishers. Ten Pacific Todiramphus species are embedded within the T. chloris complex, rendering it paraphyletic. Among these is a radiation of five species from the remote islands of Eastern Polynesian, as well as the widespread migratory taxon, Todiramphus sanctus. Our results offer strong support that Pacific Todiramphus, including T. chloris, underwent an extensive range expansion and diversification less than 1 Ma. Multiple instances of secondary sympatry have accumulated in this group, despite its recent origin, including on Australia and oceanic islands in Palau, Vanuatu and the Solomon Islands. Significant ecomorphological and behavioural differences exist between secondarily sympatric lineages, which suggest that pre-mating isolating mechanisms were achieved rapidly during diversification. We found evidence for complex biogeographic patterns, including a novel phylogeographic break in the eastern Solomon Islands that separates a Northern Melanesian clade from Polynesian taxa. In light of our results, we discuss systematic relationships of Todiramphus and propose an updated taxonomy. This paper contributes to our understanding of avian diversification and assembly on islands, and to the systematics of a classically polytypic species complex.

9.
Mol Phylogenet Evol ; 83: 118-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463752

RESUMO

Monarch flycatchers are a major component of Australo-Pacific and Wallacean avifaunas. To date, the family has received incomplete attention by molecular systematists who focused on subclades with minimal character and/or taxon sampling. As a result, Monarchidae taxonomy is still out-of-date, and biogeographic reconstructions have been based on poorly-resolved phylogenies, limiting their interpretation. Here, we produced a comprehensive, molecular phylogeny of the Monarchidae inferred from mitochondrial and nuclear loci using both concatenated and multilocus coalescent frameworks. We sampled 92% of the 99 recognized monarchid biological species and included deeper sampling within several phylogenetic species complexes, including Monarcha castaneiventris, Symposiachrus barbatus, and Terpsiphone rufiventer. Melampitta is identified as sister to the monarch flycatchers, which themselves comprise four major lineages. The first lineage comprises Terpsiphone and allies, the second lineage is Grallina, the third is Arses and Myiagra, and the fourth lineage comprises a diverse assemblage of genera including the "core monarchs" and the most geographically isolated groups like Chasiempis (Hawaii) and Pomarea (eastern Polynesia). Gene tree discordance was evident in Myiagra, which has implications for basal lineages in the genus (e.g., M. azureocapilla, M. hebetior, and M. alecto). Numerous genera within the core monarchs are paraphyletic, including Mayrornis and Pomarea, whereas the validity of others such as Metabolus are questionable. We recognize polytypic taxa as multiple species, including Lamprolia victoriae and Myiagra azureocapilla. In general, the topology of species complexes included short internodes that were not well resolved, owing to their rapid diversification across island archipelagos. Terpsiphone rufiventer comprises multiple lineages, including a heretofore-unappreciated West African lineage, but relationships within these rapid radiations will require extensive genomic sampling for further resolution. This study establishes a new benchmark for Monarchidae systematics and it provides an excellent framework for future work on biogeography and character evolution in a diverse Australo-Papuan radiation.


Assuntos
Evolução Biológica , Filogenia , Aves Canoras/classificação , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA , Aves Canoras/genética
10.
Mol Phylogenet Evol ; 70: 442-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24012584

RESUMO

We reconstruct the phylogeny of fruit doves (genus Ptilinopus) and allies with a dense sampling that includes almost all species, based on mitochondrial and nuclear sequence data. We evaluate the most likely biogeographic scenario for the evolution of this group that colonized many islands of the Pacific Ocean. We also investigate the evolution of one of the main plumage character of fruit doves (the color of the crown), and we propose several revisions of the group's systematics. All Ptilinopus taxa formed a monophyletic group that includes two morphologically distinct genera, Alectroenas and Drepanoptila, confirming a previous result found with less species and genes. The divergence time analysis suggests that the basal divergences within Ptilinopus dated to the Early Oligocene, and the biogeographic analysis indicates that fruit doves originated most probably from the proto New Guinea region. The earliest dispersals from the New Guinea region to Oceania occurred with the colonization of New Caledonia and Fiji. A large group of Polynesian species (Central and Eastern), as well as the three taxa found in Micronesia and four species from the Guinean-Moluccan region, form the "purpuratus" clade, the largest diversification of fruit doves within Oceania, which also has a New Guinean origin. However, the eastbound colonization of fruit doves was not associated with a significant increase of their diversification rate. Overall, the Melanesian region did not act as a cradle for fruit doves, in contrast to the New Guinea region which is found as the ancestral area for several nodes within the phylogeny.


Assuntos
Columbidae/genética , Filogenia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Fiji , Nova Caledônia , Nova Guiné , Oceania , Oceano Pacífico , Filogeografia , Análise de Sequência de DNA
12.
Am Nat ; 174(2): 244-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19489704

RESUMO

Many studies demonstrate that differences in mating signals are used by incipient species in recognizing potential mates or sexual competitors (i.e., species recognition). Little is known, however, about the genetic changes responsible for these differences in mating signals. Populations of the Monarcha castaneiventris flycatcher vary in plumage color across the Solomon Islands, with a subspecies on Makira Island having chestnut bellies and blue-black upper parts (Monarcha castaneiventris megarhynchus) and a subspecies on neighboring satellite islands being entirely blue-black (melanic; Monarcha castaneiventris ugiensis). Here we show that a single nonsynonymous point mutation in the melanocortin-1 receptor (MC1R) gene is present in all melanic birds from one island (Santa Ana) but absent in all chestnut-bellied birds from Makira Island, implicating this mutation in causing melanism. Birds from a second satellite island (Ugi) do not show the same perfect association between this MC1R variant and plumage color, suggesting an alternative mechanism for melanism on this island. Finally, taxidermic mount presentation experiments in Makira (chestnut) and Santa Ana (melanic) suggest that the plumage difference mediates species recognition. Assuming that the signals used in species recognition are also used in mutual mate choice, our results indicate that a single amino acid substitution contributes to speciation.


Assuntos
Substituição de Aminoácidos , Cor , Plumas/anatomia & histologia , Passeriformes/genética , Receptor Tipo 1 de Melanocortina/genética , Comunicação Animal , Animais , Feminino , Especiação Genética , Haplótipos , Masculino , Preferência de Acasalamento Animal , Passeriformes/anatomia & histologia , Receptor Tipo 1 de Melanocortina/química , Especificidade da Espécie
13.
Proc Natl Acad Sci U S A ; 106(6): 1863-8, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19181851

RESUMO

Factors that influence speciation rates among groups of organisms are integral to deciphering macroevolutionary processes; however, they remain poorly understood. Here, we use molecular phylogenetic data and divergence time estimates to reconstruct the pattern and tempo of speciation within a widespread and homogeneous bird family (white-eyes, Zosteropidae) that contains an archetypal "great speciator." Our analyses show that the majority of this species-rich family constitutes a clade that arose within the last 2 million years, yielding a per-lineage diversification rate among the highest reported for vertebrates (1.95-2.63 species per million years). However, unlike most rapid radiations reported to date, this burst of diversification was not limited in geographic scope, but instead spanned the entire Old World tropics, parts of temperate Asia, and numerous Atlantic, Pacific, and Indian Ocean archipelagos. The tempo and geographic breadth of this rapid radiation defy any single diversification paradigm, but implicate a prominent role for lineage-specific life-history traits (such as rapid evolutionary shifts in dispersal ability) that enabled white-eyes to respond rapidly and persistently to the geographic drivers of diversification.


Assuntos
Biodiversidade , Evolução Biológica , Aves/genética , Especiação Genética , Animais , Geografia , Dados de Sequência Molecular , Filogenia , Tempo
14.
Evolution ; 63(1): 153-64, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18803681

RESUMO

Changes in mating signals among populations contribute to species formation. Often these signals involve a suite of display traits of different sensory modalities ("multimodal signals"); however, few studies have tested the consequences of multimodal signal divergence with most focusing on only a single divergent signal or suite of signals of the same sensory modality. Populations of the chestnut-bellied flycatcher Monarcha castaneiventris vary in song and plumage color across the Solomon Islands. Using taxidermic mount presentation and song playback experiments, we tested for the relative roles of divergent song and color in homotypic ("same type") recognition between one pair of recently diverged sister taxa (the nominate chestnut-bellied M. c. castaneiventris and the white-capped M. c. richardsii forms). We found that both plumage and song type influenced the intensity of aggressive response by territory-owners, with plumage color playing a stronger role. These results indicate that differences in plumage and song are used in homotypic recognition, suggesting the importance of multimodal signal divergence in the evolution of premating reproductive isolation.


Assuntos
Pigmentação , Aves Canoras/anatomia & histologia , Aves Canoras/genética , Vocalização Animal , Animais , Feminino , Masculino , Melanesia , Comportamento Sexual Animal , Aves Canoras/classificação , Aves Canoras/fisiologia , Especificidade da Espécie
15.
Mol Phylogenet Evol ; 37(3): 776-88, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16291094

RESUMO

Systematic relationships among monarch flycatchers (genus Monarcha) are poorly understood despite dramatic patterns of morphological differentiation that have long attracted the attention of evolutionary biologists. With sequence data from the mitochondrial ND2 gene and Control Region, we produced a phylogenetic hypothesis for evolutionary relationships within Monarcha and among the biogeographically complex Solomon Island endemics. Outgroup analyses contradicted monophyly of the genus by imbedding a representative of the genus Clytorhynchus within one of two major clades recovered within Monarcha. These two monarch clades generally correspond with ecological and morphological distinctions, suggesting the genus may warrant revision pending the inclusion of taxa currently allied with Clytorhynchus (e.g., Neolalage spp.). Maximum likelihood reconstructions support monophyletic groupings of the two endemic Solomon Island monarch radiations, however, two currently recognized superspecies (Monarcha manadensis and M. melanopsis) were polyphyletic and paraphyletic, respectively. Interestingly, molecular and morphological differentiation were strikingly decoupled among several Solomon Island endemics and between migratory and non-migratory forms of Monarcha trivirgatus in eastern Australia, suggesting morphological evolution has masked the true history of speciation in these groups. This initial phylogeny provides a novel platform for ongoing exploration of the history underlying dramatic patterns of geographic variation among tropical Pacific flycatchers.


Assuntos
Demografia , Passeriformes/genética , Filogenia , Animais , Sequência de Bases , Primers do DNA , DNA Mitocondrial/genética , Funções Verossimilhança , Melanesia , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
16.
Nature ; 438(7065): 216-9, 2005 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16281034

RESUMO

Oceanic islands have long served as natural laboratories for understanding the diversification of life. In particular, the many thousands of islands spanning the tropical Pacific support an unparalleled array of terrestrial communities whose patterns of diversity contributed fundamental insights to the development of classical speciation and biogeographic theory. Much of this work is founded on an assumption derived from traditional taxonomic approaches, namely that faunas on these widely separated archipelagos stem from a simple one-way, downstream flow of colonists from continents to islands. Here we show, with the use of molecular phylogenetic data from one of the original bird families used to justify this assumption, that a diverse array of endemic island genera and species are the product of a single radiation that diversified across all major Pacific archipelagos in a non-stepping-stone fashion, and recently recolonized continental areas. The geographic scope and lineage-specific approach of this study reveal evolutionary patterns long obscured by traditional taxonomic surveys and indicate that widely dispersed archipelagos can be sources of biological diversity.


Assuntos
Aves/classificação , Aves/fisiologia , Meio Ambiente , Filogenia , Animais , Australásia , Biodiversidade , Aves/genética , Especiação Genética , Geografia , Íntrons/genética , Dados de Sequência Molecular , Mioglobina/genética , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...