Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(3): C661-C683, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189129

RESUMO

Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.


Assuntos
Inflamação , Neutrófilos , Humanos , Macrófagos , Homeostase
2.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37760019

RESUMO

The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/dbNrf2 knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/dbNrf2 KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with NRF2 KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/dbNrf2 KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. NRF2 KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D.

3.
Front Immunol ; 14: 1237729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564640

RESUMO

C-reactive protein (CRP) is well-recognized as a sensitive biomarker of inflammation. Association of elevations in plasma/serum CRP level with disease state has received considerable attention, even though CRP is not a specific indicator of a single disease state. Circulating CRP levels have been monitored with a varying degree of success to gauge disease severity or to predict disease progression and outcome. Elevations in CRP level have been implicated as a useful marker to identify patients at risk for cardiovascular disease and certain cancers, and to guide therapy in a context-dependent manner. Since even strong associations do not establish causality, the pathogenic role of CRP has often been over-interpreted. CRP functions as an important modulator of host defense against bacterial infection, tissue injury and autoimmunity. CRP exists in conformationally distinct forms, which exhibit distinct functional properties and help explaining the diverse, often contradictory effects attributed to CRP. In particular, dissociation of native pentameric CRP into its subunits, monomeric CRP, unmasks "hidden" pro-inflammatory activities in pentameric CRP. Here, we review recent advances in CRP targeting strategies, therapeutic lowering of circulating CRP level and development of CRP antagonists, and a conformation change inhibitor in particular. We will also discuss their therapeutic potential in mitigating the deleterious actions attributed to CRP under various pathologies, including cardiovascular, pulmonary and autoimmune diseases and cancer.


Assuntos
Proteína C-Reativa , Doenças Cardiovasculares , Humanos , Proteína C-Reativa/metabolismo , Inflamação/metabolismo , Biomarcadores , Doenças Cardiovasculares/tratamento farmacológico , Progressão da Doença
4.
Blood ; 142(6): 505-507, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561541
5.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259922

RESUMO

Endothelial cells form a constitutively anticoagulant surface under homeostasis. While loss of this anticoagulant property is a hallmark of many cardiovascular diseases, the molecular mechanisms underlying the procoagulant transition remain incompletely understood. In this issue of the JCI, Schmaier et al. identify the phospholipid scramblases TMEM16E and TMEM16F, which support endothelial procoagulant activity through phosphatidylserine (PS) externalization. Genetic deletion of TMEM16E or TMEM16F or treatment with TMEM16 inhibitors prevented PS externalization and reduced fibrin formation in the vessel wall independently of platelets in a murine laser-injury model of thrombosis. These findings reveal a role for endothelial TMEM16E in thrombosis and identify TMEM16E as a potential therapeutic target for preventing thrombus formation.


Assuntos
Células Endoteliais , Trombose , Camundongos , Animais , Células Endoteliais/metabolismo , Coagulação Sanguínea/genética , Plaquetas/metabolismo , Trombose/genética , Trombose/metabolismo , Anticoagulantes , Fosfatidilserinas
6.
EMBO Mol Med ; 15(1): e17003, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36465053

RESUMO

C-reactive protein (CRP) is a marker of acute inflammation and modulator of host defense against infections. CRP exists in conformationally distinct forms that exhibit opposing biological functions and could amplify tissue damage. Therefore, therapies that efficiently target the deleterious actions of CRP are needed. In this issue of EMBO Molecular Medicine, Zeller et al report development of a novel low molecular weight phosphocholine-mimetic that binds to pCRP and inhibits conformation change-mediated expression of pro-inflammatory actions without impairing its defense function and demonstrate its beneficial actions in preventing rejection of allograft transplants and renal ischemia-reperfusion injury.


Assuntos
Proteína C-Reativa , Inflamação , Humanos , Inflamação/metabolismo , Rim/metabolismo
8.
Antioxidants (Basel) ; 11(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421487

RESUMO

Neutrophils, the most abundant white blood cells in humans, are critical for host defense against invading pathogens. Equipped with an array of antimicrobial molecules, neutrophils can eradicate bacteria and clear debris. Among the microbicide proteins is the heme protein myeloperoxidase (MPO), stored in the azurophilic granules, and catalyzes the formation of the chlorinating oxidant HOCl and other oxidants (HOSCN and HOBr). MPO is generally associated with killing trapped bacteria and inflicting collateral tissue damage to the host. However, the characterization of non-enzymatic functions of MPO suggests additional roles for this protein. Indeed, evolving evidence indicates that MPO can directly modulate the function and fate of neutrophils, thereby shaping immunity. These actions include MPO orchestration of neutrophil trafficking, activation, phagocytosis, lifespan, formation of extracellular traps, and MPO-triggered autoimmunity. This review scrutinizes the multifaceted roles of MPO in immunity, focusing on neutrophil-mediated host defense, tissue damage, repair, and autoimmunity. We also discuss novel therapeutic approaches to target MPO activity, expression, or MPO signaling for the treatment of inflammatory and autoimmune diseases.

9.
Proc Natl Acad Sci U S A ; 119(31): e2201146119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878041

RESUMO

Aberrant immune responses, including hyperresponsiveness to Toll-like receptor (TLR) ligands, underlie acute respiratory distress syndrome (ARDS). Type I interferons confer antiviral activities and could also regulate the inflammatory response, whereas little is known about their actions to resolve aberrant inflammation. Here we report that interferon-ß (IFN-ß) exerts partially overlapping, but also cooperative actions with aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 to counter TLR9-generated cues to regulate neutrophil apoptosis and phagocytosis in human neutrophils. In mice, TLR9 activation impairs bacterial clearance, prolongs Escherichia coli-evoked lung injury, and suppresses production of IFN-ß and the proresolving lipid mediators 15-epi-LXA4 and resolvin D1 (RvD1) in the lung. Neutralization of endogenous IFN-ß delays pulmonary clearance of E. coli and aggravates mucosal injury. Conversely, treatment of mice with IFN-ß accelerates clearance of bacteria, restores neutrophil phagocytosis, promotes neutrophil apoptosis and efferocytosis, and accelerates resolution of airway inflammation with concomitant increases in 15-epi-LXA4 and RvD1 production in the lungs. Pharmacological blockade of the lipoxin receptor ALX/FPR2 partially prevents IFN-ß-mediated resolution. These findings point to a pivotal role of IFN-ß in orchestrating timely resolution of neutrophil and TLR9 activation-driven airway inflammation and uncover an IFN-ß-initiated resolution program, activation of an ALX/FPR2-centered, proresolving lipids-mediated circuit, for ARDS.


Assuntos
Interferon beta , Lipoxinas , Síndrome do Desconforto Respiratório , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/imunologia , Humanos , Inflamação/tratamento farmacológico , Interferon beta/imunologia , Interferon beta/farmacologia , Lipoxinas/farmacologia , Camundongos , Receptores de Formil Peptídeo/antagonistas & inibidores , Síndrome do Desconforto Respiratório/tratamento farmacológico , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Ativação Transcricional/efeitos dos fármacos
11.
Front Immunol ; 13: 863449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615359

RESUMO

The resolution of inflammation is a temporally and spatially coordinated process that in its innate manifestations, primarily involves neutrophils and macrophages. The shutdown of infection or injury-induced acute inflammation requires termination of neutrophil accumulation within the affected sites, neutrophil demise, and clearance by phagocytes (efferocytosis), such as tissue-resident and monocyte-derived macrophages. This must be followed by macrophage reprogramming from the inflammatory to reparative and consequently resolution-promoting phenotypes and the production of resolution-promoting lipid and protein mediators that limit responses in various cell types and promote tissue repair and return to homeostatic architecture and function. Recent studies suggest that these events, and macrophage reprogramming to pro-resolving phenotypes in particular, are not only important in the acute setting, but might be paramount in limiting chronic inflammation, autoimmunity, and various uncontrolled cytokine-driven pathologies. The SARS-CoV-2 (COVID-19) pandemic has caused a worldwide health and economic crisis. Severe COVID-19 cases that lead to high morbidity are tightly associated with an exuberant cytokine storm that seems to trigger shock-like pathologies, leading to vascular and multiorgan failures. In other cases, the cytokine storm can lead to diffuse alveolar damage that results in acute respiratory distress syndrome (ARDS) and lung failure. Here, we address recent advances on effectors in the resolution of inflammation and discuss how pro-resolution mechanisms with particular emphasis on macrophage reprogramming, might be harnessed to limit the universal COVID-19 health threat.


Assuntos
COVID-19 , Inflamação , Macrófagos , COVID-19/metabolismo , COVID-19/patologia , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , SARS-CoV-2
12.
Front Immunol ; 13: 866747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371088

RESUMO

Acute inflammation is a localized and self-limited innate host-defense mechanism against invading pathogens and tissue injury. Neutrophils, the most abundant immune cells in humans, play pivotal roles in host defense by eradicating invading pathogens and debris. Ideally, elimination of the offending insult prompts repair and return to homeostasis. However, the neutrophils` powerful weaponry to combat microbes can also cause tissue damage and neutrophil-driven inflammation is a unifying mechanism for many diseases. For timely resolution of inflammation, in addition to stopping neutrophil recruitment, emigrated neutrophils need to be disarmed and removed from the affected site. Accumulating evidence documents the phenotypic and functional versatility of neutrophils far beyond their antimicrobial functions. Hence, understanding the receptors that integrate opposing cues and checkpoints that determine the fate of neutrophils in inflamed tissues provides insight into the mechanisms that distinguish protective and dysregulated, excessive inflammation and govern resolution. This review aims to provide a brief overview and update with key points from recent advances on neutrophil heterogeneity, functional versatility and signaling, and discusses challenges and emerging therapeutic approaches that target neutrophils to enhance the resolution of inflammation.


Assuntos
Inflamação , Neutrófilos , Homeostase , Humanos , Infiltração de Neutrófilos , Transdução de Sinais
13.
Blood ; 139(8): 1128-1130, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35201336
14.
FEBS J ; 289(14): 3932-3953, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683814

RESUMO

Neutrophil granulocytes form the first line of host defense against invading pathogens and tissue injury. They are rapidly recruited from the blood to the affected sites, where they deploy an impressive arsenal of effectors to eliminate invading microbes and damaged cells. This capacity is endowed in part by readily mobilizable proteins acquired during granulopoiesis and stored in multiple types of cytosolic granules with each granule type containing a unique cargo. Once released, granule proteins contribute to killing bacteria within the phagosome or the extracellular milieu, but are also capable of inflicting collateral tissue damage. Neutrophil-driven inflammation underlies many common diseases. Research over the last decade has documented neutrophil heterogeneity and functional versatility far beyond their antimicrobial function. Emerging evidence indicates that neutrophils utilize granule proteins to interact with innate and adaptive immune cells and orchestrate the inflammatory response. Granule proteins have been identified as important modulators of neutrophil trafficking, reverse transendothelial migration, phagocytosis, neutrophil life span, neutrophil extracellular trap formation, efferocytosis, cytokine activity, and autoimmunity. Hence, defining their roles within the inflammatory locus is critical for minimizing damage to the neighboring tissue and return to homeostasis. Here, we provide an overview of recent advances in the regulation of degranulation, granule protein functions, and signaling in modulating neutrophil-mediated immunity. We also discuss how targeting granule proteins and/or signaling could be harnessed for therapeutic benefits.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Grânulos Citoplasmáticos/metabolismo , Humanos , Imunidade Inata , Inflamação/metabolismo , Fagocitose
15.
Diabetologia ; 64(11): 2589-2601, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34370045

RESUMO

AIMS/HYPOTHESIS: We previously reported that renal tubule-specific deletion of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) results in upregulation of renal angiotensinogen (Agt) and downregulation of sodium-glucose co-transporter 2 (Sglt2) in HnrnpfRT knockout (KO) mice. Non-diabetic HnrnpfRT KO mice develop hypertension, renal interstitial fibrosis and glycosuria with no renoprotective effect from downregulated Sglt2 expression. Here, we investigated the effect of renal tubular Hnrnpf deletion on hyperfiltration and kidney injury in Akita mice, a model of type 1 diabetes. METHODS: Akita HnrnpfRT KO mice were generated through crossbreeding tubule-specific (Pax8)-Cre mice with Akita floxed-Hnrnpf mice on a C57BL/6 background. Male non-diabetic control (Ctrl), Akita, and Akita HnrnpfRT KO mice were studied up to the age of 24 weeks (n = 8/group). RESULTS: Akita mice exhibited elevated systolic blood pressure as compared with Ctrl mice, which was significantly higher in Akita HnrnpfRT KO mice than Akita mice. Compared with Akita mice, Akita HnrnpfRT KO mice had lower blood glucose levels with increased urinary glucose excretion. Akita mice developed kidney hypertrophy, glomerular hyperfiltration (increased glomerular filtration rate), glomerulomegaly, mesangial expansion, podocyte foot process effacement, thickened glomerular basement membranes, renal interstitial fibrosis and increased albuminuria. These abnormalities were attenuated in Akita HnrnpfRT KO mice. Treatment of Akita HnrnpfRT KO mice with a selective A1 adenosine receptor inhibitor resulted in an increase in glomerular filtration rate. Renal Agt expression was elevated in Akita mice and further increased in Akita HnrnpfRT KO mice. In contrast, Sglt2 expression was increased in Akita and decreased in Akita HnrnpfRT KO mice. CONCLUSIONS/INTERPRETATION: The renoprotective effect of Sglt2 downregulation overcomes the renal injurious effect of Agt when these opposing factors coexist under diabetic conditions, at least partly via the activation of tubuloglomerular feedback.


Assuntos
Injúria Renal Aguda/prevenção & controle , Diabetes Mellitus Tipo 1/prevenção & controle , Modelos Animais de Doenças , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/fisiologia , Túbulos Renais/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Angiotensinogênio , Animais , Glicemia/metabolismo , Pressão Sanguínea , Western Blotting , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Regulação para Baixo , Taxa de Filtração Glomerular/fisiologia , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Receptores Purinérgicos P1/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Teofilina/análogos & derivados , Teofilina/farmacologia
18.
Front Immunol ; 12: 660760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859651

RESUMO

Neutrophils act as the first line of cellular defense against invading pathogens or tissue injury. Their rapid recruitment into inflamed tissues is critical for the elimination of invading microorganisms and tissue repair, but is also capable of inflicting damage to neighboring tissues. The ß2 integrins and Mac-1 (CD11b/CD18, αMß2 or complement receptor 3) in particular, are best known for mediating neutrophil adhesion and transmigration across the endothelium and phagocytosis of microbes. However, Mac-1 has a broad ligand recognition property that contributes to the functional versatility of the neutrophil population far beyond their antimicrobial function. Accumulating evidence over the past decade has demonstrated roles for Mac-1 ligands in regulating reverse neutrophil transmigration, lifespan, phagocytosis-induced cell death, release of neutrophil extracellular traps and efferocytosis, hence extending the traditional ß2 integrin repertoire in shaping innate and adaptive immune responses. Understanding the functions of ß2 integrins may partly explain neutrophil heterogeneity and may be instrumental to develop novel therapies specifically targeting Mac-1-mediated pro-resolution actions without compromising immunity. Thus, this review details novel insights on outside-in signaling through ß2 integrins and neutrophil functional heterogeneity pertinent to the resolution of inflammation.


Assuntos
Antígenos CD18/genética , Antígenos CD18/imunologia , Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Animais , Adesão Celular/imunologia , Camundongos , Neutrófilos/fisiologia , Fagocitose/imunologia , Transdução de Sinais
19.
Clin Sci (Lond) ; 135(7): 943-961, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822013

RESUMO

Clinical trials indicate that sodium/glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) improve kidney function, yet, the molecular regulation of SGLT2 expression is incompletely understood. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) on SGLT2 expression. In adult non-diabetic participants in the Nephrotic Syndrome Study Network (NEPTUNE, n=163), multivariable linear regression analysis showed SGLT2 mRNA was significantly associated with angiotensinogen (AGT), renin, and angiotensin-converting enzyme (ACE) mRNA levels (P<0.001). In vitro, angiotensin II (Ang II) dose-dependently stimulated SGLT2 expression in HK-2, human immortalized renal proximal tubular cells (RPTCs); losartan and antioxidants inhibited it. Sglt2 expression was increased in transgenic (Tg) mice specifically overexpressing Agt in their RPTCs, as well as in WT mice with a single subcutaneous injection of Ang II (1.44 mg/kg). Moreover, Ang II (1000 ng/kg/min) infusion via osmotic mini-pump in WT mice for 4 weeks increased systolic blood pressure (SBP), glomerulosclerosis, tubulointerstitial fibrosis, and albuminuria; canaglifozin (Cana, 15 mg/kg/day) reversed these changes, with the exception of SBP. Fractional glucose excretion (FeGlu) was higher in Ang II+Cana than WT+Cana, whereas Sglt2 expression was similar. Our data demonstrate a link between intrarenal RAS and SGLT2 expression and that SGLT2i ameliorates Ang II-induced renal injury independent of SBP.


Assuntos
Angiotensina II/farmacologia , Nefropatias/fisiopatologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Sistema Renina-Angiotensina/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/genética
20.
Diabetes ; 70(6): 1388-1403, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820760

RESUMO

We investigated the impact of nuclear factor erythroid 2-related factor 2 (Nrf2) overexpression in renal proximal tubular cells (RPTCs) on blood glucose, kidney injury, and sodium-glucose cotransporter 2 (Sglt2) expression in diabetic Akita Nrf2 -/-/Nrf2RPTC transgenic (Tg) mice. Immortalized human RPTCs (HK2) stably transfected with plasmid containing the SGLT2 promoter and human kidneys from patients with diabetes were also studied. Nrf2 overexpression was associated with increased blood glucose, glomerular filtration rate, urinary albumin-to-creatinine ratio, tubulointerstitial fibrosis, and Sglt2 expression in Akita Nrf2 -/-/Nrf2RPTC Tg mice compared with their Akita Nrf2 -/- littermates. In vitro, oltipraz or transfection of NRF2 cDNA stimulated SGLT2 expression and SGLT2 promoter activity in HK2, and these effects were inhibited by trigonelline or NRF2 siRNA. The deletion of the NRF2-responsive element (NRF2-RE) in the SGLT2 promoter abolished the stimulatory effect of oltipraz on SGLT2 promoter activity. NRF2 binding to the NRF2-RE of the SGLT2 promoter was confirmed by gel mobility shift assay and chromatin immunoprecipitation assays. Kidneys from patients with diabetes exhibited higher levels of NRF2 and SGLT2 in the RPTCs than kidneys from patients without diabetes. These results suggest a link by which NRF2 mediates hyperglycemia stimulation of SGLT2 expression and exacerbates blood glucose and kidney injury in diabetes.


Assuntos
Nefropatias Diabéticas/patologia , Hiperglicemia/patologia , Fator 2 Relacionado a NF-E2/genética , Transportador 2 de Glucose-Sódio/genética , Animais , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Feminino , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transportador 2 de Glucose-Sódio/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...