Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 37(1): e5028, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37669779

RESUMO

We propose a deep learning (DL) model and a hyperparameter optimization strategy to reconstruct T1 and T2 maps acquired with the magnetic resonance fingerprinting (MRF) methodology. We applied two different MRF sequence routines to acquire images of ex vivo rat brain phantoms using a 7-T preclinical scanner. Subsequently, the DL model was trained using experimental data, completely excluding the use of any theoretical MRI signal simulator. The best combination of the DL parameters was implemented by an automatic hyperparameter optimization strategy, whose key aspect is to include all the parameters to the fit, allowing the simultaneous optimization of the neural network architecture, the structure of the DL model, and the supervised learning algorithm. By comparing the reconstruction performances of the DL technique with those achieved from the traditional dictionary-based method on an independent dataset, the DL approach was shown to reduce the mean percentage relative error by a factor of 3 for T1 and by a factor of 2 for T2 , and to improve the computational time by at least a factor of 37. Furthermore, the proposed DL method enables maintaining comparable reconstruction performance, even with a lower number of MRF images and a reduced k-space sampling percentage, with respect to the dictionary-based method. Our results suggest that the proposed DL methodology may offer an improvement in reconstruction accuracy, as well as speeding up MRF for preclinical, and in prospective clinical, investigations.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Espectroscopia de Ressonância Magnética
2.
J Anat ; 243(5): 870-877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37391907

RESUMO

We investigated the interfaces of the epiphyseal plate with over- and underlying bone segments using an integrated approach of histochemistry, microtomography and scanning electron microscopy (SEM) to overcome the inherent limitations of sections-based techniques. Microtomography was able to provide an unobstructed, frontal view of large expanses of the two bone surfaces facing the growth plate, while SEM observation after removal of the soft matrix granted an equally unhindered access with a higher resolution. The two interfaces appeared widely dissimilar. On the diaphyseal side the hypertrophic chondrocytes were arranged in tall columns packed in a sort of compact palisade; the interposed extracellular matrix was actively calcifying into a thick mineralized crust growing towards the epiphysis. Behind the mineralization front, histochemical data revealed a number of surviving cartilage islets which were being slowly remodelled into bone. In contrast, the epiphyseal side of the cartilage consisted of a relatively quiescent reserve zone whose mineralization was marginal in amount and discontinuous in extension; the epiphyseal bone consisted of a loose trabecular meshwork, with ample vascular spaces opening directly into the non-mineralized cartilage. On both sides the calcification process took place through the formation of spheroidal bodies 1-2 µm wide which gradually grew by apposition and coalesced into a solid mass, in a way distinctly different from that of bone and other calcified tissues.

3.
Matrix Biol ; 120: 43-59, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178987

RESUMO

Ca2+ is a second messenger that regulates a variety of cellular responses in bone, including osteoblast differentiation. Mutations in trimeric intracellular cation channel B (TRIC-B), an endoplasmic reticulum channel specific for K+, a counter ion for Ca2+flux, affect bone and cause a recessive form of osteogenesis imperfecta (OI) with a still puzzling mechanism. Using a conditional Tmem38b knock out mouse, we demonstrated that lack of TRIC-B in osteoblasts strongly impairs skeleton growth and structure, leading to bone fractures. At the cellular level, delayed osteoblast differentiation and decreased collagen synthesis were found consequent to the Ca2+ imbalance and associated with reduced collagen incorporation in the extracellular matrix and poor mineralization. The impaired SMAD signaling detected in mutant mice, and validated in OI patient osteoblasts, explained the osteoblast malfunction. The reduced SMAD phosphorylation and nuclear translocation were mainly caused by alteration in Ca2+ calmodulin kinase II (CaMKII)-mediated signaling and to a less extend by a lower TGF-ß reservoir. SMAD signaling, osteoblast differentiation and matrix mineralization were only partially rescued by TGF-ß treatment, strengthening the impact of CaMKII-SMAD axes on osteoblast function. Our data established the TRIC-B role in osteoblasts and deepened the contribution of the CaMKII-SMAD signaling in bone.


Assuntos
Osteogênese Imperfeita , Animais , Camundongos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Osteogênese , Colágeno/metabolismo , Osteoblastos , Cátions/metabolismo
4.
J Chem Phys ; 155(21): 214201, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879662

RESUMO

Longitudinal and transverse 1H nuclear magnetic resonance relaxivities of Ln(III)-DOTA complexes (with Ln = Gd, Tb, Dy, Er; DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) and Mn(II) aqueous solutions were measured in a wide range of frequencies, 10 kHz to 700 MHz. The experimental data were interpreted by means of models derived from the Solomon-Bloembergen-Morgan theory. The data analysis was performed assuming the orbital angular momentum L = 0 for Gd-DOTA and the aqua ion [Mn(H2O)6]2+ and L ≠ 0 for Dy-, Tb-, and Er-DOTA. A refined estimation of the zero-field-splitting barrier Δ and of the modulation correlation time τv was obtained for [Mn(H2O)6]2+ by extending the fitting of nuclear magnetic relaxation dispersion profiles to the low-field regime. The Gd-DOTA fitting parameters resulted in good agreement with the literature, and the fit of transverse relaxivity data confirmed the negligibility of the scalar interaction in the nuclear relaxation mechanism. Larger transverse relaxivities of Dy-DOTA and Tb-DOTA (∼10 mM-1 s-1) with respect to Er-DOTA (∼1 mM-1 s-1) were observed at 16 T. Such higher values are suggested to be due to a shorter residence time τm that is possibly linked to the fluctuations of the hyperfine interaction and the different shape of the magnetic anisotropy. The possible employment of Dy-DOTA, Tb-DOTA, and Er-DOTA as negative magnetic resonance imaging contrast agents for high-field applications was envisaged by collecting spin-echo images at 7 T. Particularly in Dy- and Tb-derivatives, the transverse relaxivity at 16 T is of the order of the Gd-one at 1.5 T.

5.
J Phys Chem B ; 122(6): 1836-1845, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29350528

RESUMO

1H and 13C dynamic nuclear polarizations have been studied in 13C-enriched ß-cyclodextrins doped with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl free radical. 1H and 13C polarizations raised above 7.5 and 7%, respectively, and for both nuclear species, the transfer of polarization from the electron spins appears to be consistent with a thermal mixing scenario for a concentration of 9 13C nuclei per molecule. When the concentration is increased to 21 13C nuclei per molecule, a decrease in the spin-lattice relaxation and polarization buildup rates is observed. This reduction is associated with the bottleneck effect induced by the decrease in the number of electron spins per nucleus when both the nuclear spin-lattice relaxation and the polarization occur through the electron non-Zeeman reservoir. 13C nuclear spin-lattice relaxation has been studied in the 1.8-340 K range, and the effects of internal molecular motions and of the free radicals on the relaxation are discussed. 13C hyperpolarization performances and room-temperature spin-lattice relaxation times show that these are promising materials for future biomedical applications.


Assuntos
beta-Ciclodextrinas/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Metilação , Prótons
6.
J Phys Chem B ; 121(12): 2584-2593, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28260385

RESUMO

1H dynamic nuclear polarization and nuclear spin-lattice relaxation rates have been studied in amorphous complexes of ß-cyclodextrins doped with different concentrations of the TEMPO radical. Nuclear polarization increased up to 10% in the optimal case, with a behavior of the buildup rate (1/TPOL) and of the nuclear spin-lattice relaxation rate (1/T1n) consistent with a thermal mixing regime. The temperature dependence of 1/T1n and its increase with the radical concentration indicate a relaxation process arising from the modulation of the electron-nucleus coupling by the glassy dynamics. The high-temperature relaxation is driven by molecular motions, and 1/T1n was studied at room temperature in liquid solutions for dilution levels close to the ones typically used for in vivo studies.

7.
Phys Chem Chem Phys ; 18(36): 25655-25662, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711561

RESUMO

In dynamic nuclear polarization (DNP) experiments, the compound is driven out-of-equilibrium by the microwave (MW) irradiation of the radical electron spins. Their stationary state has been recently probed via electron double resonance (ELDOR) techniques showing, at low temperature, a broad depolarization of the electron paramagnetic resonance (EPR) spectrum under microwave irradiation. In this theoretical manuscript, we develop a numerical method to compute exactly the EPR spectrum in the presence of dipolar interactions. Our results reproduce the observed broad depolarisation and provide a microscopic justification for the spectral diffusion mechanism. We show the validity of the spin-temperature approach for typical radical concentration used in dissolution DNP protocols. In particular once the interactions are properly taken into account, the spin-temperature is consistent with the non-monotonic behavior of the EPR spectrum with a wide minimum around the irradiated frequency.

8.
Neurobiol Dis ; 93: 146-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27173096

RESUMO

One major unmet clinical need in epilepsy is the identification of therapies to prevent or arrest epilepsy development in patients exposed to a potential epileptogenic insult. The development of such treatments has been hampered by the lack of non-invasive biomarkers that could be used to identify the patients at-risk, thereby allowing to design affordable clinical studies. Our goal was to test the predictive value of cognitive deficits and brain astrocyte activation for the development of epilepsy following a potential epileptogenic injury. We used a model of epilepsy induced by pilocarpine-evoked status epilepticus (SE) in 21-day old rats where 60-70% of animals develop spontaneous seizures after around 70days, although SE is similar in all rats. Learning was evaluated in the Morris water-maze at days 15 and 65 post-SE, each time followed by proton magnetic resonance spectroscopy for measuring hippocampal myo-Inositol levels, a marker of astrocyte activation. Rats were video-EEG monitored for two weeks at seven months post-SE to detect spontaneous seizures, then brain histology was done. Behavioral and imaging data were retrospectively analysed in epileptic rats and compared with non-epileptic and control animals. Rats displayed spatial learning deficits within three weeks from SE. However, only epilepsy-prone rats showed accelerated forgetting and reduced learning rate compared to both rats not developing epilepsy and controls. These deficits were associated with reduced hippocampal neurogenesis. myo-Inositol levels increased transiently in the hippocampus of SE-rats not developing epilepsy while this increase persisted until spontaneous seizures onset in epilepsy-prone rats, being associated with a local increase in S100ß-positive astrocytes. Neuronal cell loss was similar in all SE-rats. Our data show that behavioral deficits, together with a non-invasive marker of astrocyte activation, predict which rats develop epilepsy after an acute injury. These measures have potential clinical relevance for identifying individuals at-risk for developing epilepsy following exposure to epileptogenic insults, and consequently, for designing adequately powered antiepileptogenesis trials.


Assuntos
Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Estado Epiléptico/fisiopatologia , Animais , Astrócitos/metabolismo , Comportamento Animal/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Masculino , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Estado Epiléptico/complicações
9.
Neurobiol Aging ; 36(2): 776-88, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25433456

RESUMO

Alzheimer's disease is experimentally modeled in transgenic (Tg) mice overexpressing mutated forms of the human amyloid precursor protein either alone or combined with mutated presenilins and tau. In the present study, we developed a systematic approach to compare double (TASTPM) and triple (APP/PS2/Tau) Tg mice by serial magnetic resonance imaging and spectroscopy analysis from 4 to 26 months of age to define homologous biomarkers between mice and humans. Hippocampal atrophy was found in Tg mice compared with WT. In APP/PS2/Tau the effect was age-dependent, whereas in TASTPM it was detectable from the first investigated time point. Importantly, both mice displayed an age-related entorhinal cortex thinning and robust striatal atrophy, the latter associated with a significant loss of synaptophysin. Hippocampal magnetic resonance spectroscopy revealed lower glutamate levels in both Tg mice and a selective myo-inositol increase in TASTPM. This noninvasive magnetic resonance imaging analysis, revealed common biomarkers between humans and mice, and could, thus, be promoted as a fully translational tool to be adopted in the preclinical investigation of therapeutic approaches.


Assuntos
Doença de Alzheimer/patologia , Córtex Entorrinal/patologia , Hipocampo/patologia , Imageamento por Ressonância Magnética , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Atrofia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glutamatos/metabolismo , Hipocampo/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Presenilinas/genética , Presenilinas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Chemistry ; 20(40): 12817-25, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25137217

RESUMO

Double-decker complexes of lanthanide cations can be readily prepared with tetraazaporphyrins (porphyrazines). We have synthesized and characterized a series of neutral double-decker complexes [Ln(OETAP)2 ] (Ln=Tb(3+), Dy(3+), Gd(3+), Y(3+); OETAP=octa(ethyl)tetraazaporphyrin). Some of these complexes show analogous magnetic features to their phthalocyanine (Pc) counterparts. The Tb(3+) and Dy(3+) derivatives exhibit single-molecule magnet (SMM) behavior with high blocking temperatures over 50 and 10 K, respectively. These results confirm that, in double-decker complexes that involve Tb or Dy, the (N4)2 square antiprism coordination mode has an important role in inducing very large activation energies for magnetization reversal. In contrast with their Pc counterparts, the use of tetraazaporphyrin ligands endows the presented [Ln(OETAP)2] complexes with extraordinary chemical versatility. The double-decker complexes that exhibit SMM behavior are highly soluble in common organic solvents, and easily processable even through sublimation.

11.
Phys Chem Chem Phys ; 16(2): 753-64, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24270353

RESUMO

The available theoretical approaches aiming at describing Dynamic Nuclear spin Polarization (DNP) in solutions containing molecules of biomedical interest and paramagnetic centers are not able to model the behaviour observed upon varying the concentration of trityl radicals or the polarization enhancement caused by moderate addition of gadolinium complexes. In this manuscript, we first show experimentally that the nuclear steady state polarization reached in solutions of pyruvic acid with 15 mM trityl radicals is substantially independent on the average internuclear distance. This evidences a leading role of electron (over nuclear) spin relaxation processes in determining the ultimate performances of DNP. Accordingly, we have devised a variant of the Thermal Mixing model for inhomogenously broadened electron resonance lines which includes a relaxation term describing the exchange of magnetic anisotropy energy of the electron spin system with the lattice. Thanks to this additional term, the dependence of the nuclear polarization on the electron concentration can be properly accounted for. Moreover, the model predicts a strong increase of the final polarization upon shortening the electron spin-lattice relaxation time, providing a possible explanation for the effect of gadolinium doping.

12.
Epilepsia ; 53(11): 1907-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23030308

RESUMO

PURPOSE: Long-lasting activation of glia occurs in brain during epileptogenesis, which develops after various central nervous system (CNS) injuries. Glia is the cell source of the biosynthesis and release of molecules that play a role in seizure recurrence and may contribute to epileptogenesis, thus representing a putative biomarker of epilepsy development and severity. In this study, we set up an in vivo longitudinal study using (1) H-magnetic resonance spectroscopy (MRS) to measure metabolite content in the rat hippocampus that could reflect the extent and the duration of glia activation. Our aim was to explore if glia activation during epileptogenesis, or in the chronic epileptic phase, can be used as a biomarker of tissue epileptogenicity (i.e., a measure of epilepsy severity). METHODS: (1) H-MRS measurements were done in the adult rat hippocampus every 24 h for 7 days after status epilepticus (SE) and in chronic epileptic rats, using a 7 T Bruker Biospec MRI (magnetic resonance imaging)/MRS scanner. We studied changes in metabolite levels that reflect astrocytes (myo-inositol, mIns; glutathione, GSH), microglia/macrophage activation and the associated neuronal cell injury/dysfunction (lactate, Lac; N-acetyl-aspartate, NAA). (1) H-MRS results were validated by post hoc immunohistochemistry using cell-specific markers. Data analysis was done to determine whether correlations exist between the metabolite changes and spontaneous seizure frequency or the extent of neuronal cell loss. KEY FINDINGS: The analysis of (1) H-MRS spectra showed a progressive increase in mIns and GSH levels after SE, which was maintained in epileptic rats. Lac signal transiently increased during epileptogenesis being undetectable in chronic epileptic tissue. NAA levels were chronically reduced from day 2 post-SE. Immunohistochemistry confirmed the activation of microglia and astrocytes and the progressive neuronal cell loss. GSH levels during epileptogenesis showed a negative correlation with the frequency of spontaneous seizures, whereas S100ß levels in epileptic tissue were positively correlated with this outcome measure. A negative correlation was also found between GSH or mIns levels during epileptogenesis and the extent of neurodegeneration in hippocampus of epileptic rats. SIGNIFICANCE: (1) H-MRS is a valuable in vivo technique for determining the extent and temporal profile of glia activation after an epileptogenic injury. S100ß levels measured in the epileptic tissue may represent a biomarker of seizure frequency, whereas GSH levels during epileptogenesis could serve as a predictive marker of seizure frequency. Both mIns and GSH levels measured before the onset of spontaneous seizures predict the extent of neuronal cell loss in epileptic tissue. These findings highlight the potential of serial (1) H-MRS analysis for searching epilepsy biomarkers for prognostic, diagnostic, or therapeutic purposes.


Assuntos
Epilepsia/diagnóstico , Epilepsia/metabolismo , Hipocampo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neuroglia/metabolismo , Animais , Biomarcadores/metabolismo , Epilepsia/patologia , Hipocampo/patologia , Masculino , Neuroglia/patologia , Prótons , Ratos , Ratos Sprague-Dawley
13.
J Am Chem Soc ; 131(12): 4387-96, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19275145

RESUMO

The experimental and theoretical study of the electron spin dynamics in the anionic form of a single-ion molecule magnet (SIMM), the bis-phthalocyaninato terbium (III) molecule [Pc(2)Tb](-)[TBA](+), has been addressed by means of solid state (1)H NMR spectroscopy. The magnetic properties of the caged Tb(3+) metal center were investigated in a series of diamagnetically diluted preparations, where the excess of tetrabutylamonium bromide ([TBA]Br)(n) salt was used as diamagnetic matrix complement. We found that a high temperature activated spin dynamics characterizes the systems, which involved phonon-assisted transitions among the crystal field levels in qualitative agreements with literature results. However, the activation barriers in these processes range from 641 cm(-1) for the diamagnetically diluted samples to 584 cm(-1) for those undiluted; thus, they exhibit barriers 2-3 times larger than witnessed in earlier (230 cm(-1)) reports (e.g., Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694-8695). At cryogenic temperatures, fluctuations are driven by tunneling processes between the m = +6 and -6 low-energy levels. We found that the barrier Delta and the tunneling rates change from sample to sample and especially the diamagnetically diluted [Pc(2)Tb](-) molecules appear affected by the sample's magneto/thermal history. These observations emphasize that matrix arrangements around [Pc(2)Tb](-) can appreciably alter the splitting of the crystal field levels, its symmetry, and hence, the spin dynamics. Therefore, understanding how small differences in molecular surroundings (as for instance occurring by depositing on surfaces) can trigger substantial modifications in the SIMM property is of utmost importance for the effective operation of such molecules for single-molecule data storage, for example.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Térbio/química , Cristalização , Íons , Metais , Modelos Estatísticos , Conformação Molecular , Estrutura Molecular , Compostos de Amônio Quaternário/química , Espectrofotometria/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...