Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(11): 453, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882907

RESUMO

As key enablers of Industry 4.0 and Internet of Things, sensors are among the first devices which are to encounter fast physical transformation (from rigid to flexible) as of large-scale utilization of printing technologies. In order to step-up this process, adaptation of conventional fabrication technologies (based on metallization) employed in sensors' development should be tested and demonstrated. Within this paper, we are reporting the functionality of dielectrophoresis (DEP) for electromanipulation of multi-walled carbon nanotubes (MWCNTs) as sensing element, at the level of printed interdigitated electrodes. First, we present the flatbed screen-printed process of interdigitated microelectrodes on flexible substrate with tailored geometries employed afterwards for generating convenient dielectrophoretic forces of optimal magnitude and frequency for trapping MWCNTs. Successful dielectrophoresis operability of MWCNTs across silver-based screen-printed µIDE (interdigitated microelectrodes) provided with electrode gaps of ≈ 150 µm was validated and suitable values of the signal frequencies for avoiding parasitic electrokinetic phenomena (AC electro-osmosis, electrothermal effect) occurring simultaneously with DEP were identified. Time-dependent effect of DEP over MWCNTs bridges formation is discussed, as well as voltage magnitude contribution.

2.
Polymers (Basel) ; 15(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631405

RESUMO

Polytetrafluoroethylene (PTFE) is a potential candidate for the fabrication of flexible electronics devices and electronics with applications in various extreme environments, mainly due to its outstanding chemical and physical properties. However, to date, the utilization of PTFE in printing trials has been limited due to the material's low surface tension and wettability, which do not ensure good adhesion of the printing ink at the level of the substrate. Within this paper, successful printing of PTFE is realized after pre-treating the surface of the substrate with the help of dielectric barrier discharge non-thermal plasma. The efficiency of the pre-treatment is demonstrated with respect to both silver- and carbon-based inks that are commercially available, and finally, the long-lasting pre-treatment effect is demonstrated for periods of time spanning from minutes to days. The experimental results are practically paving the way toward large-scale utilization of PTFE as substrate in fabricating printed electronics in harsh working environments. After 3 s of plasma treatment of the foil, the WCA decreased from approximately 103° to approximately 70°. The resolution of the printed lines of carbon ink was not time dependent and was unmodified, even if the printing was realized within 1 min from the time of applying the pre-treatment or 10 days later. The evaluation of the surface tension (σ) measured with Arcotest Ink Pink showed an increase in σ up to 40 < σ < 42 mN/m for treated Teflon foil and from σ < 30 mN/m corresponding to the untreated substrate. The difference in resolution was distinguishable when increasing the width of the printed lines from 500 µm to 750 µm, but when increasing the width from 750 µm to 1000 µm, the difference was minimal.

3.
Micromachines (Basel) ; 13(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363854

RESUMO

This study proposes a feasible approach for the rapid, sensitive, and label-free identification of cancerous cells based on dielectrophoretic (DEP) manipulation and electrical characterization. In this method, the concentration of target cells at the level of customized microelectrodes via DEP is first determined, followed by an electrical impedance evaluation. The study demonstrates the capacity of the methodology to electrically differentiate HT-29 cancer cells from healthy blood cells based on their impedance spectra. Within a higher frequency domain, the electrical impedance of trapped cancer cells was significantly lower compared with the normal ones. In order to evaluate the functionality and reproducibility of the proposed method, the influence of the DEP and EIS (electrical impedance spectroscopy) operating voltages on the electrical characterization of trapped HT-29 cells was analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...