Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(28): 23562-70, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22593571

RESUMO

Aquaglyceroporins are transmembrane proteins belonging to the family of aquaporins, which facilitate the passage of specific uncharged solutes across membranes of cells. The yeast aquaglyceroporin Fps1 is important for osmoadaptation by regulating intracellular glycerol levels during changes in external osmolarity. Upon high osmolarity conditions, yeast accumulates glycerol by increased production of the osmolyte and by restricting glycerol efflux through Fps1. The extended cytosolic termini of Fps1 contain short domains that are important for regulating glycerol flux through the channel. Here we show that the transmembrane core of the protein plays an equally important role. The evidence is based on results from an intragenic suppressor mutation screen and domain swapping between the regulated variant of Fps1 from Saccharomyces cerevisiae and the hyperactive Fps1 ortholog from Ashbya gossypii. This suggests a novel mechanism for regulation of glycerol flux in yeast, where the termini alone are not sufficient to restrict Fps1 transport. We propose that glycerol flux through the channel is regulated by interplay between the transmembrane helices and the termini. This mechanism enables yeast cells to fine-tune intracellular glycerol levels at a wide range of extracellular osmolarities.


Assuntos
Aquagliceroporinas/metabolismo , Eremothecium/metabolismo , Glicerol/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Aquagliceroporinas/química , Aquagliceroporinas/genética , Sítios de Ligação/genética , Transporte Biológico , Eremothecium/genética , Teste de Complementação Genética , Glicina/genética , Glicina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Concentração Osmolar , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Equilíbrio Hidroeletrolítico/genética
2.
Biol Cell ; 97(7): 487-500, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15966864

RESUMO

Recently, genome sequences from different fungi have become available. This information reveals that yeasts and filamentous fungi possess up to five aquaporins. Functional analyses have mainly been performed in budding yeast, Saccharomyces cerevisiae, which has two orthodox aquaporins and two aquaglyceroporins. Whereas Aqy1 is a spore-specific water channel, Aqy2 is only expressed in proliferating cells and controlled by osmotic signals. Fungal aquaglyceroporins often have long, poorly conserved terminal extensions and differ in the otherwise highly conserved NPA motifs, being NPX and NXA respectively. Three subgroups can be distinguished. Fps1-like proteins seem to be restricted to yeasts. Fps1, the osmogated glycerol export channel in S. cerevisiae, plays a central role in osmoregulation and determination of intracellular glycerol levels. Sequences important for gating have been identified within its termini. Another type of aquaglyceroporin, resembling S. cerevisiae Yfl054, has a long N-terminal extension and its physiological role is currently unknown. The third group of aquaglyceroporins, only found in filamentous fungi, have extensions of variable size. Taken together, yeasts and filamentous fungi are a fruitful resource to study the function, evolution, role and regulation of aquaporins, and the possibility to compare orthologous sequences from a large number of different organisms facilitates functional and structural studies.


Assuntos
Aquaporinas/metabolismo , Fungos/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aquaporinas/genética , Sequência Conservada , Fungos/genética , Genes Fúngicos , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
3.
Eur J Biochem ; 271(4): 771-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14764093

RESUMO

Aquaporins and aquaglyceroporins mediate the transport of water and solutes across biological membranes. Saccharomyces cerevisiae Fps1 is an aquaglyceroporin that mediates controlled glycerol export during osmoregulation. The transport function of Fps1 is rapidly regulated by osmotic changes in an apparently unique way and distinct regions within the long N- and C-terminal extensions are needed for this regulation. In order to learn more about the mechanisms that control Fps1 we have set up a genetic screen for hyperactive Fps1 and isolated mutations in 14 distinct residues, all facing the inside of the cell. Five of the residues lie within the previously characterized N-terminal regulatory domain and two mutations are located within the approach to the first transmembrane domain. Three mutations cause truncation of the C-terminus, confirming previous studies on the importance of this region for channel control. Furthermore, the novel mutations identify two conserved residues in the channel-forming B-loop as critical for channel control. Structural modelling-based rationalization of the observed mutations supports the notion that the N-terminal regulatory domain and the B-loop could interact in channel control. Our findings provide a framework for further genetic and structural analysis to better understand the mechanism that controls Fps1 function by osmotic changes.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Aquaporinas/química , Transporte Biológico , Western Blotting , Genes Fúngicos , Glicerol/análogos & derivados , Glicerol/metabolismo , Proteínas de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transformação Genética
4.
J Biol Chem ; 279(15): 14954-60, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14752103

RESUMO

The Saccharomyces cerevisiae gene FPS1 encodes an aquaglyceroporin of the major intrinsic protein (MIP) family. The main function of Fps1p seems to be the efflux of glycerol in the adaptation of the yeast cell to lower external osmolarity. Fps1p is an atypical member of the family, because the protein is much larger (669 amino acids) than most MIPs due to long hydrophilic extensions in both termini. We have shown previously that a short domain in the N-terminal extension of the protein is required for restricting glycerol transport through the channel (Tamás, M. J., Karlgren, S., Bill, R. M., Hedfalk, K., Allegri, L., Ferreira, M., Thevelein, J. M., Rydström, J., Mullins, J. G. L., and Hohmann, S. (2003) J. Biol. Chem. 278, 6337-6345). Deletion of the N-terminal domain results in an unregulated channel, loss of glycerol, and osmosensitivity. In this work we have investigated the role of the Fps1p C terminus (139 amino acids). A set of eight truncations has been constructed and tested in vivo in a yeast fps1Delta strain. We have performed growth tests, membrane localization following cell fractionation, and glycerol accumulation measurements as well as an investigation of the osmotic stress response. Our results show that the C-terminal extension is also involved in restricting transport through Fps1p. We have identified a sequence of 12 amino acids, residues 535-546, close to the sixth transmembrane domain. This element seems to be important for controlling Fps1p function. Similar to the N-terminal domain, the C-terminal domain is amphiphilic and has a potential to dip into the membrane.


Assuntos
Proteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Western Blotting , Divisão Celular , Membrana Celular/metabolismo , Deleção de Genes , Glicerol/química , Immunoblotting , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Osmose , Fenótipo , Plasmídeos/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...