Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cerebellum ; 23(2): 688-701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36997834

RESUMO

The association of hypogonadism and cerebellar ataxia was first recognized in 1908 by Gordon Holmes. Since the seminal description, several heterogeneous phenotypes have been reported, differing for age at onset, associated features, and gonadotropins levels. In the last decade, the genetic bases of these disorders are being progressively uncovered. Here, we review the diseases associating ataxia and hypogonadism and the corresponding causative genes. In the first part of this study, we focus on clinical syndromes and genes (RNF216, STUB1, PNPLA6, AARS2, SIL1, SETX) predominantly associated with ataxia and hypogonadism as cardinal features. In the second part, we mention clinical syndromes and genes (POLR3A, CLPP, ERAL1, HARS, HSD17B4, LARS2, TWNK, POLG, ATM, WFS1, PMM2, FMR1) linked to complex phenotypes that include, among other features, ataxia and hypogonadism. We propose a diagnostic algorithm for patients with ataxia and hypogonadism, and we discuss the possible common etiopathogenetic mechanisms.


Assuntos
Aminoacil-tRNA Sintetases , Ataxia Cerebelar , Proteína do X Frágil da Deficiência Intelectual , Hipogonadismo , RNA Polimerase III , Humanos , Ataxia Cerebelar/genética , Ataxia/genética , Fenótipo , Hipogonadismo/genética , Hipogonadismo/patologia , Mutação , Fatores de Troca do Nucleotídeo Guanina/genética , Ubiquitina-Proteína Ligases/genética , DNA Helicases/genética , RNA Helicases/genética , Enzimas Multifuncionais/genética
2.
J Neurol ; 270(10): 5057-5063, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418012

RESUMO

Tubulinopathies encompass neurodevelopmental disorders caused by mutations in genes encoding for different isotypes of α- and ß-tubulins, the structural components of microtubules. Less frequently, mutations in tubulins may underlie neurodegenerative disorders. In the present study, we report two families, one with 11 affected individuals and the other with a single patient, carrying a novel, likely pathogenic, variant (p. Glu415Lys) in the TUBA4A gene (NM_006000). The phenotype, not previously described, is that of spastic ataxia. Our findings widen the phenotypic and genetic manifestations of TUBA4A variants and add a new type of spastic ataxia to be taken into consideration in the differential diagnosis.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Atrofia Óptica/genética , Espasticidade Muscular/genética , Espasticidade Muscular/patologia , Deficiência Intelectual/genética , Mutação/genética , Fenótipo , Paraplegia Espástica Hereditária/genética
3.
Neurogenetics ; 24(3): 147-160, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37131039

RESUMO

Hereditary spastic paraplegia (HSP) refers to a group of heterogeneous neurological disorders mainly characterized by corticospinal degeneration (pure forms), but sometimes associated with additional neurological and extrapyramidal features (complex HSP). The advent of next-generation sequencing (NGS) has led to huge improvements in knowledge of HSP genetics and made it possible to clarify the genetic etiology of hundreds of "cold cases," accelerating the process of reaching a molecular diagnosis. The different NGS-based strategies currently employed as first-tier approaches most commonly involve the use of targeted resequencing panels and exome sequencing, whereas genome sequencing remains a second-tier approach because of its high costs. The question of which approach is the best is still widely debated, and many factors affect the choice. Here, we aim to analyze the diagnostic power of different NGS techniques applied in HSP, by reviewing 38 selected studies in which different strategies were applied in different-sized cohorts of patients with genetically uncharacterized HSP.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Testes Genéticos , Loci Gênicos
5.
Mov Disord ; 38(4): 654-664, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36695111

RESUMO

BACKGROUND: Sporadic adult-onset ataxias without known genetic or acquired cause are subdivided into multiple system atrophy of cerebellar type (MSA-C) and sporadic adult-onset ataxia of unknown etiology (SAOA). OBJECTIVES: To study the differential evolution of both conditions including plasma neurofilament light chain (NfL) levels and magnetic resonance imaging (MRI) markers. METHODS: SPORTAX is a prospective registry of sporadic ataxia patients with an onset >40 years. Scale for the Assessment and Rating of Ataxia was the primary outcome measure. In subgroups, blood samples were taken and MRIs performed. Plasma NfL was measured via a single molecule assay. Regional brain volumes were automatically measured. To assess signal changes, we defined the pons and middle cerebellar peduncle abnormality score (PMAS). Using mixed-effects models, we analyzed changes on a time scale starting with ataxia onset. RESULTS: Of 404 patients without genetic diagnosis, 130 met criteria of probable MSA-C at baseline and 26 during follow-up suggesting clinical conversion to MSA-C. The remaining 248 were classified as SAOA. At baseline, NfL, cerebellar white matter (CWM) and pons volume, and PMAS separated MSA-C from SAOA. NfL decreased in MSA-C and did not change in SAOA. CWM and pons volume decreased faster, whereas PMAS increased faster in MSA-C. In MSA-C, pons volume had highest sensitivity to change, and PMAS was a predictor of faster progression. Fulfillment of possible MSA criteria, NfL and PMAS were risk factors, CWM and pons volume protective factors for conversion to MSA-C. CONCLUSIONS: This study provides detailed information on differential evolution and prognostic relevance of biomarkers in MSA-C and SAOA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Atrofia de Múltiplos Sistemas , Humanos , Adulto , Ataxia Cerebelar/diagnóstico , Ataxia/genética , Cerebelo , Atrofia de Múltiplos Sistemas/diagnóstico , Biomarcadores
6.
J Neurol ; 269(10): 5431-5435, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35633373

RESUMO

We screened 62 late-onset ataxia patients for the AAGGG pathological expansion in the RFC-1 gene that, when biallelic, causes Cerebellar Ataxia, Neuropathy, Vestibular Areflexia Syndrome (CANVAS). Nine patients tested positive. Six had a previous diagnosis of sporadic adult-onset ataxia (SAOA) and three of multisystem atrophy type C (MSA-C). Further six patients were heterozygous for the pathological RFC-1 expansion, four with an initial diagnosis of MSA-C and two of SAOA. In comparison with CANVAS, MSA-C patients had faster progression and shorter disease duration to walking with aids. An abnormal DaTscan does not seem to contribute to differential diagnosis between CANVAS and MSA-C.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Atrofia de Múltiplos Sistemas , Doenças do Sistema Nervoso Periférico , Doenças Vestibulares , Adulto , Ataxia/diagnóstico , Ataxia/genética , Vestibulopatia Bilateral/diagnóstico , Ataxia Cerebelar/genética , Diagnóstico Diferencial , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Doenças do Sistema Nervoso Periférico/diagnóstico , Reflexo Anormal , Síndrome , Doenças Vestibulares/diagnóstico
7.
Neurol Genet ; 8(2): e664, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35372684

RESUMO

Background and Objectives: Hereditary spastic paraplegias (HSPs) are a group of inherited rare neurologic disorders characterized by length-dependent degeneration of the corticospinal tracts and dorsal columns, whose prominent clinical feature is represented by spastic gait. Spastic paraplegia type 4 (SPG4, SPAST-HSP) is the most common form. We present both clinical and molecular findings of a large cohort of patients, with the aim of (1) defining the clinical spectrum of SPAST-HSP in Italy; (2) describing their molecular features; and (3) assessing genotype-phenotype correlations to identify features associated with worse disability. Methods: A cross-sectional retrospective study with molecular and clinical data collected in an anonymized database was performed. Results: A total of 723 Italian patients with SPAST-HSP (58% men) from 316 families, with a median age at onset of 35 years, were included. Penetrance was 97.8%, with men showing higher Spastic Paraplegia Rating Scale (SPRS) scores (19.67 ± 12.58 vs 16.15 ± 12.61, p = 0.009). In 26.6% of patients with SPAST-HSP, we observed a complicated phenotype, mainly including intellectual disability (8%), polyneuropathy (6.7%), and cognitive decline (6.5%). Late-onset cases seemed to progress more rapidly, and patients with a longer disease course displayed a more severe neurologic disability, with higher SPATAX (3.61 ± 1.46 vs 2.71 ± 1.20, p < 0.001) and SPRS scores (22.63 ± 11.81 vs 12.40 ± 8.83, p < 0.001). Overall, 186 different variants in the SPAST gene were recorded, of which 48 were novel. Patients with SPAST-HSP harboring missense variants displayed intellectual disability (14.5% vs 4.4%, p < 0.001) more frequently, whereas patients with truncating variants presented more commonly cognitive decline (9.7% vs 2.6%, p = 0.001), cerebral atrophy (11.2% vs 3.4%, p = 0.003), lower limb spasticity (61.5% vs 44.5%), urinary symptoms (50.0% vs 31.3%, p < 0.001), and sensorimotor polyneuropathy (11.1% vs 1.1%, p < 0.001). Increasing disease duration (DD) and abnormal motor evoked potentials (MEPs) were also associated with increased likelihood of worse disability (SPATAX score>3). Discussion: The SPAST-HSP phenotypic spectrum in Italian patients confirms a predominantly pure form of HSP with mild-to-moderate disability in 75% of cases, and slight prevalence of men, who appeared more severely affected. Early-onset cases with intellectual disability were more frequent among patients carrying missense SPAST variants, whereas patients with truncating variants showed a more complicated disease. Both longer DD and altered MEPs are associated with worse disability.

8.
Eur J Neurol ; 29(7): 1885-1891, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271759

RESUMO

BACKGROUND AND PURPOSE: Seven thousand rare diseases have been identified; most of them are of genetic origin. The diagnosis of a neurogenetic disease is difficult, and management and training programs are not well defined through Europe. To capture and assess care needs, the Neurogenetics Panel of the European Academy of Neurology (EAN) has performed an explorative survey. METHODS: The survey covering multiple topics of neurogenetics was sent to all neurologists and neuropediatricians affiliated with the EAN practicing in Europe. RESULTS: We collected answers from 239 members based in 40 European member states. Even though most of the responders were aware of neurogenetic diseases, when we came to amenability of carrying out a complete genetic diagnosis, almost one-third of the responders declared they were not happy with the current way of ordering genetic analyses in their countries. Furthermore, although single-gene analysis is diffusely present in Europe, whole exome and genome sequencing are not easily accessible, with considerable variabilities among countries. Almost 10% of the responders did not know if presymptomatic and prenatal diagnosis was available in their countries, and 47.3% were not aware of which newborn screening programs were available. Finally, 96.3% of responders declared that there is a need for education and training in neurogenetics. CONCLUSIONS: We believe that this survey may be of importance for all European stakeholders in neurogenetics in identifying key priorities, targeting areas to encourage education/travel fellowships, and educational seminars in the future, because this area will only accelerate, and diagnostic requirements will expand.


Assuntos
Neurologia , Academias e Institutos , Europa (Continente) , Humanos , Recém-Nascido , Neurologistas , Neurologia/educação , Inquéritos e Questionários
9.
Neurology ; 98(20): e1985-e1996, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35264424

RESUMO

BACKGROUND AND OBJECTIVES: Neurofilament light (NfL) appears to be a promising fluid biomarker in repeat-expansion spinocerebellar ataxias (SCAs), with piloting studies in mixed SCA cohorts suggesting that NfL might be increased at the ataxic stage of SCA type 1 (SCA1). We here hypothesized that NfL is increased not only at the ataxic stage of SCA1, but also at its (likely most treatment-relevant) preataxic stage. METHODS: We assessed serum NfL (sNfL) and CSF NfL (cNfL) levels in both preataxic and ataxic SCA1, leveraging a multicentric cohort recruited at 6 European university centers, and clinical follow-up data, including actually observed (rather than only predicted) conversion to the ataxic stage. Levels of sNfL and cNfL were assessed by single-molecule array and ELISA technique, respectively. RESULTS: Forty individuals with SCA1 (23 preataxic, 17 ataxic) and 89 controls were enrolled, including 11 preataxic individuals converting to the ataxic stage. sNfL levels were increased at the preataxic (median 15.5 pg/mL [interquartile range 10.5-21.1 pg/mL]) and ataxic stage (31.6 pg/mL [26.2-37.7 pg/mL]) compared to controls (6.0 pg/mL [4.7-8.6 pg/mL]), yielding high age-corrected effect sizes (preataxic: r = 0.62, ataxic: r = 0.63). sNfL increases were paralleled by increases of cNfL at both the preataxic and ataxic stage. In preataxic individuals, sNfL levels increased with proximity to predicted ataxia onset, with significant sNfL elevations already 5 years before onset, and confirmed in preataxic individuals with actually observed ataxia onset. sNfL increases were detected already in preataxic individuals with SCA1 without volumetric atrophy of cerebellum or pons, suggesting that sNfL might be more sensitive to early preataxic neurodegeneration than the currently known most change-sensitive regions in volumetric MRI. Using longitudinal sNfL measurements, we estimated sample sizes for clinical trials with the reduction of sNfL as the endpoint. DISCUSSION: sNfL levels might provide easily accessible peripheral biomarkers in both preataxic and ataxic SCA1, allowing stratification of preataxic individuals regarding proximity to onset, early detection of neurodegeneration even before volumetric MRI alterations, and potentially capture of treatment response in clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT01037777. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that NfL levels are increased in both ataxic and preataxic SCA1 and are associated with ataxia onset.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Atrofia/patologia , Biomarcadores , Ataxia Cerebelar/patologia , Cerebelo/patologia , Humanos , Filamentos Intermediários , Proteínas de Neurofilamentos , Ataxias Espinocerebelares/diagnóstico
11.
J Neurol ; 269(1): 437-450, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34487232

RESUMO

BACKGROUND: Monoallelic variants in the KIF1A gene are associated with a large set of clinical phenotypes including neurodevelopmental and neurodegenerative disorders, underpinned by a broad spectrum of central and peripheral nervous system involvement. METHODS: In a multicenter study conducted in patients presenting spastic gait or complex neurodevelopmental disorders, we analyzed the clinical, genetic and neuroradiological features of 28 index cases harboring heterozygous variants in KIF1A. We conducted a literature systematic review with the aim to comparing our findings with previously reported KIF1A-related phenotypes. RESULTS: Among 28 patients, we identified nine novel monoallelic variants, and one a copy number variation encompassing KIF1A. Mutations arose de novo in most patients and were prevalently located in the motor domain. Most patients presented features of a continuum ataxia-spasticity spectrum with only five cases showing a prevalently pure spastic phenotype and six presenting congenital ataxias. Seventeen mutations occurred in the motor domain of the Kinesin-1A protein, but location of mutation did not correlate with neurological and imaging presentations. When tested in 15 patients, muscle biopsy showed oxidative metabolism alterations (6 cases), impaired respiratory chain complexes II + III activity (3/6) and low CoQ10 levels (6/9). Ubiquinol supplementation (1gr/die) was used in 6 patients with subjective benefit. CONCLUSIONS: This study broadened our clinical, genetic, and neuroimaging knowledge of KIF1A-related disorders. Although highly heterogeneous, it seems that manifestations of ataxia-spasticity spectrum disorders seem to occur in most patients. Some patients also present secondary impairment of oxidative metabolism; in this subset, ubiquinol supplementation therapy might be appropriate.


Assuntos
Variações do Número de Cópias de DNA , Cinesinas , Paraplegia Espástica Hereditária , Estudos Transversais , Heterozigoto , Humanos , Cinesinas/genética , Mutação , Fenótipo , Paraplegia Espástica Hereditária/genética
12.
J Neurol ; 269(3): 1476-1484, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34292398

RESUMO

INTRODUCTION: Spinocerebellar ataxia type 14 (SCA14) is a dominantly inherited neurological disorder characterized by slowly progressive cerebellar ataxia. SCA14 is caused by mutations in PRKCG, a gene encoding protein kinase C gamma (PKCγ), a master regulator of Purkinje cells development. METHODS: We performed next-generation sequencing targeted resequencing panel encompassing 273 ataxia genes in 358 patients with genetically undiagnosed ataxia. RESULTS: We identified fourteen patients in ten families harboring nine pathogenic heterozygous variants in PRKCG, seven of which were novel. We encountered four patients with not previously described phenotypes: one with episodic ataxia, one with a spastic paraparesis dominating her clinical manifestations, and two children with an unusually severe phenotype. CONCLUSIONS: Our study broadens the genetic and clinical spectrum of SCA14.


Assuntos
Proteína Quinase C/genética , Ataxias Espinocerebelares , Ataxia , Feminino , Heterozigoto , Humanos , Mutação , Fenótipo , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética
13.
Neurol Sci ; 43(2): 1071-1077, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34296356

RESUMO

Mutations in POLR3A are characterized by high phenotypic heterogeneity, with manifestations ranging from severe childhood-onset hypomyelinating leukodystrophic syndromes to milder and later-onset gait disorders with central hypomyelination, with or without additional non-neurological signs. Recently, a milder phenotype consisting of late-onset spastic ataxia without hypomyelinating leukodystrophy has been suggested to be specific to the intronic c.1909 + 22G > A mutation in POLR3A. Here, we present 10 patients from 8 unrelated families with POLR3A-related late-onset spastic ataxia, all harboring the c.1909 + 22G > A variant. Most of them showed an ataxic-spastic picture, two a "pure" cerebellar phenotype, and one a "pure" spastic presentation. The non-neurological findings typically associated with POLR3A mutations were absent in all the patients. The main findings on brain MRI were bilateral hyperintensity along the superior cerebellar peduncles on FLAIR sequences, observed in most of the patients, and cerebellar and/or spinal cord atrophy, found in half of the patients. Only one patient exhibited central hypomyelination. The POLR3A mutations present in this cohort were the c.1909 + 22G > A splice site variant found in compound heterozygosity with six additional variants (three missense, two nonsense, one splice) and, in one patient, with a novel large deletion involving exons 14-18. Interestingly, this patient had the most "complex" presentation among those observed in our cohort; it included some neurological and non-neurological features, such as seizures, neurosensory deafness, and lipomas, that have not previously been reported in association with late-onset POLR3A-related disorders, and therefore further expand the phenotype.


Assuntos
Atrofia Óptica , Paraparesia Espástica , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Ataxia/diagnóstico por imagem , Ataxia/genética , Criança , Humanos , Mutação , Fenótipo , RNA Polimerase III/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética
14.
Eur J Prev Cardiol ; 29(3): 445-451, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33624001

RESUMO

AIMS: To explore the feasibility of upper limbs cardiopulmonary exercise test (CPET) in Friedreich ataxia (FRDA) patients and to compare the results with sex, age, and body mass index (BMI) matched cohort of healthy controls (HC). METHODS AND RESULTS: Cardiopulmonary exercise test was performed using an upper limbs cycle ergometer on fasting subjects. Peak oxygen uptake (peak VO2) was recorded as the mean value of VO2 during a 20 s period at the maximal effort of the test at an appropriate respiratory exchange rate. The ventilatory anaerobic threshold (AT) was detected by the use of the V-slope method. We performed echocardiography with an ultrasound system equipped with a 2.5 MHz multifrequency transducer for complete M-mode, two-dimensional, Doppler, and Tissue Doppler Imaging analyses. We studied 55 FRDA and 54 healthy matched controls (HC). Peak VO2 showed a significant 31% reduction in FRDA patients compared to HC (15.2 ± 5.7 vs. 22.0 ± 6.1 mL/kg/min; P < 0.001). Peak workload was reduced by 41% in FRDA (42.9 ± 12.5 vs. 73.1 ± 21.2 W; P < 0.001). In FRDA patients, peak VO2 is inversely correlated with the Scale for Assessment and Rating of Ataxia score, disease duration, and 9HPT performance, and directly correlated with activities of daily living. The AT occurred at 48% of peak workload time in FRDA patients and at 85% in HC (P < 0.001). CONCLUSIONS: Upper limb CPET is useful in the assessment of exercise tolerance and a possible tool to determine the functional severity of the mitochondrial oxidative defect in patients with FRDA. The cardiopulmonary exercise test is an ideal functional endpoint for Phases II and III trials through a simple, non-invasive, and safe exercise test.


Assuntos
Teste de Esforço , Ataxia de Friedreich , Atividades Cotidianas , Teste de Esforço/métodos , Tolerância ao Exercício , Estudos de Viabilidade , Ataxia de Friedreich/diagnóstico , Humanos , Consumo de Oxigênio , Extremidade Superior
15.
Brain Commun ; 3(4): fcab245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34909687

RESUMO

The vacuolar H+-ATPase is a large multi-subunit proton pump, composed of an integral membrane V0 domain, involved in proton translocation, and a peripheral V1 domain, catalysing ATP hydrolysis. This complex is widely distributed on the membrane of various subcellular organelles, such as endosomes and lysosomes, and plays a critical role in cellular processes ranging from autophagy to protein trafficking and endocytosis. Variants in ATP6V0A1, the brain-enriched isoform in the V0 domain, have been recently associated with developmental delay and epilepsy in four individuals. Here, we identified 17 individuals from 14 unrelated families with both with new and previously characterized variants in this gene, representing the largest cohort to date. Five affected subjects with biallelic variants in this gene presented with a phenotype of early-onset progressive myoclonus epilepsy with ataxia, while 12 individuals carried de novo missense variants and showed severe developmental and epileptic encephalopathy. The R740Q mutation, which alone accounts for almost 50% of the mutations identified among our cases, leads to failure of lysosomal hydrolysis by directly impairing acidification of the endolysosomal compartment, causing autophagic dysfunction and severe developmental defect in Caenorhabditis elegans. Altogether, our findings further expand the neurological phenotype associated with variants in this gene and provide a direct link with endolysosomal acidification in the pathophysiology of ATP6V0A1-related conditions.

16.
Neurol Genet ; 7(6): e641, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786481

RESUMO

BACKGROUND AND OBJECTIVES: To assess the current diagnostic yield of genetic testing for the progressive myoclonus epilepsies (PMEs) of an Italian series described in 2014 where Unverricht-Lundborg and Lafora diseases accounted for ∼50% of the cohort. METHODS: Of 47/165 unrelated patients with PME of indeterminate genetic origin, 38 underwent new molecular evaluations. Various next-generation sequencing (NGS) techniques were applied including gene panel analysis (n = 7) and/or whole-exome sequencing (WES) (WES singleton n = 29, WES trio n = 7, and WES sibling n = 4). In 1 family, homozygosity mapping was followed by targeted NGS. Clinically, the patients were grouped in 4 phenotypic categories: "Unverricht-Lundborg disease-like PME," "late-onset PME," "PME plus developmental delay," and "PME plus dementia." RESULTS: Sixteen of 38 (42%) unrelated patients reached a positive diagnosis, increasing the overall proportion of solved families in the total series from 72% to 82%. Likely pathogenic variants were identified in NEU1 (2 families), CERS1 (1 family), and in 13 nonfamilial patients in KCNC1 (3), DHDDS (3), SACS, CACNA2D2, STUB1, AFG3L2, CLN6, NAXE, and CHD2. Across the different phenotypic categories, the diagnostic rate was similar, and the same gene could be found in different phenotypic categories. DISCUSSION: The application of NGS technology to unsolved patients with PME has revealed a collection of very rare genetic causes. Pathogenic variants were detected in both established PME genes and in genes not previously associated with PME, but with progressive ataxia or with developmental encephalopathies. With a diagnostic yield >80%, PME is one of the best genetically defined epilepsy syndromes.

17.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445196

RESUMO

The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Sequenciamento do Exoma , Adulto Jovem
18.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798445

RESUMO

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Assuntos
Dolicóis/metabolismo , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Glicosilação , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Epilepsias Mioclônicas Progressivas/classificação , Sequenciamento do Exoma , Adulto Jovem
19.
Neurology ; 96(9): e1369-e1382, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495376

RESUMO

OBJECTIVE: To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of replication factor complex subunit 1 (RFC1) repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). METHODS: Multimodal RFC1 repeat screening (PCR, Southern blot, whole-exome/genome sequencing-based approaches) combined with cross-sectional and longitudinal deep phenotyping in (1) cross-European cohort A (70 families) with ≥2 features of CANVAS or ataxia with chronic cough (ACC) and (2) Turkish cohort B (105 families) with unselected late-onset ataxia. RESULTS: Prevalence of RFC1 disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1 disease was also identified in Western and Eastern Asian individuals and even by whole-exome sequencing. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea or dystonia (11%). Ataxia progression was ≈1.3 Scale for the Assessment and Rating of Ataxia points per year (32 cross-sectional, 17 longitudinal assessments, follow-up ≤9 years [mean 3.1 years]) but also included early falls, variable nonlinear phases of MSA-C-like progression (SARA points 2.5-5.5 per year), and premature death. Treatment trials require 330 (1-year trial) and 132 (2-year trial) patients in total to detect 50% reduced progression. CONCLUSIONS: RFC1 disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1 treatment trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that RFC1 repeat expansions are associated with CANVAS and ACC.


Assuntos
Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/genética , Proteína de Replicação C/genética , Adulto , Idoso , Ataxia , Vestibulopatia Bilateral , Estudos de Coortes , Expansão das Repetições de DNA , Progressão da Doença , Europa (Continente) , Exoma , Feminino , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Fenótipo , Valor Preditivo dos Testes , Turquia , Doenças Vestibulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...