Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Atherosclerosis ; 390: 117462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325120

RESUMO

The decreasing costs of high-throughput genetic sequencing and increasing abundance of sequenced genome data have paved the way for the use of genetic data in identifying and validating potential drug targets. However, the number of identified potential drug targets is often prohibitively large to experimentally evaluate in wet lab experiments, highlighting the need for systematic approaches for target prioritisation. In this review, we discuss principles of genetically guided drug development, specifically addressing loss-of-function analysis, colocalization and Mendelian randomisation (MR), and the contexts in which each may be most suitable. We subsequently present a range of biomedical resources which can be used to annotate and prioritise disease-associated proteins identified by these studies including 1) ontologies to map genes, proteins, and disease, 2) resources for determining the druggability of a potential target, 3) tissue and cell expression of the gene encoding the potential target, and 4) key biological pathways involving the potential target. We illustrate these concepts through a worked example, identifying a prioritised set of plasma proteins associated with non-alcoholic fatty liver disease (NAFLD). We identified five proteins with strong genetic support for involvement with NAFLD: CYB5A, NT5C, NCAN, TGFBI and DAPK2. All of the identified proteins were expressed in both liver and adipose tissues, with TGFBI and DAPK2 being potentially druggable. In conclusion, the current review provides an overview of genetic evidence for drug target identification, and how biomedical databases can be used to provide actionable prioritisation, fully informing downstream experimental validation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas/genética , Estudo de Associação Genômica Ampla
2.
BMJ Med ; 2(1): e000554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859783

RESUMO

Objective: To clarify the performance of polygenic risk scores in population screening, individual risk prediction, and population risk stratification. Design: Secondary analysis of data in the Polygenic Score Catalog. Setting: Polygenic Score Catalog, April 2022. Secondary analysis of 3915 performance metric estimates for 926 polygenic risk scores for 310 diseases to generate estimates of performance in population screening, individual risk, and population risk stratification. Participants: Individuals contributing to the published studies in the Polygenic Score Catalog. Main outcome measures: Detection rate for a 5% false positive rate (DR5) and the population odds of becoming affected given a positive result; individual odds of becoming affected for a person with a particular polygenic score; and odds of becoming affected for groups of individuals in different portions of a polygenic risk score distribution. Coronary artery disease and breast cancer were used as illustrative examples. Results: For performance in population screening, median DR5 for all polygenic risk scores and all diseases studied was 11% (interquartile range 8-18%). Median DR5 was 12% (9-19%) for polygenic risk scores for coronary artery disease and 10% (9-12%) for breast cancer. The population odds of becoming affected given a positive results were 1:8 for coronary artery disease and 1:21 for breast cancer, with background 10 year odds of 1:19 and 1:41, respectively, which are typical for these diseases at age 50. For individual risk prediction, the corresponding 10 year odds of becoming affected for individuals aged 50 with a polygenic risk score at the 2.5th, 25th, 75th, and 97.5th centiles were 1:54, 1:29, 1:15, and 1:8 for coronary artery disease and 1:91, 1:56, 1:34, and 1:21 for breast cancer. In terms of population risk stratification, at age 50, the risk of coronary artery disease was divided into five groups, with 10 year odds of 1:41 and 1:11 for the lowest and highest quintile groups, respectively. The 10 year odds was 1:7 for the upper 2.5% of the polygenic risk score distribution for coronary artery disease, a group that contributed 7% of cases. The corresponding estimates for breast cancer were 1:72 and 1:26 for the lowest and highest quintile groups, and 1:19 for the upper 2.5% of the distribution, which contributed 6% of cases. Conclusion: Polygenic risk scores performed poorly in population screening, individual risk prediction, and population risk stratification. Strong claims about the effect of polygenic risk scores on healthcare seem to be disproportionate to their performance.

3.
Nat Genet ; 55(10): 1651-1664, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37770635

RESUMO

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Aterosclerose/genética , População Negra/genética , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , População Europeia/genética
4.
Neurology ; 101(17): e1729-e1740, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37657941

RESUMO

BACKGROUND AND OBJECTIVES: There has been considerable interest in statins because of their pleiotropic effects beyond their lipid-lowering properties. Many of these pleiotropic effects are predominantly ascribed to Rho small guanosine triphosphatases (Rho GTPases) proteins. We aimed to genetically investigate the role of lipids and statin interventions on multiple sclerosis (MS) risk and severity. METHOD: We used two-sample Mendelian randomization (MR) to investigate (1) the causal role of genetically mimic both cholesterol-dependent (through low-density lipoprotein cholesterol (LDL-C) and cholesterol biosynthesis pathway) and cholesterol-independent (through Rho GTPases) effects of statins on MS risk and MS severity, (2) the causal link between lipids (high-density lipoprotein cholesterol [HDL-C] and triglycerides [TG]) levels and MS risk and severity, and (3) the reverse causation between lipid fractions and MS risk. We used summary statistics from the Global Lipids Genetics Consortium (GLGC), eQTLGen Consortium, and the International MS Genetics Consortium (IMSGC) for lipids, expression quantitative trait loci, and MS, respectively (GLGC: n = 188,577; eQTLGen: n = 31,684; IMSGC (MS risk): n = 41,505; IMSGC (MS severity): n = 7,069). RESULTS: The results of MR using the inverse-variance weighted method show that genetically predicted RAC2, a member of cholesterol-independent pathway (OR 0.86 [95% CI 0.78-0.95], p-value 3.80E-03), is implicated causally in reducing MS risk. We found no evidence for the causal role of LDL-C and the member of cholesterol biosynthesis pathway on MS risk. The MR results also show that lifelong higher HDL-C (OR 1.14 [95% CI 1.04-1.26], p-value 7.94E-03) increases MS risk but TG was not. Furthermore, we found no evidence for the causal role of lipids and genetically mimicked statins on MS severity. There is no evidence of reverse causation between MS risk and lipids. DISCUSSION: Evidence from this study suggests that RAC2 is a genetic modifier of MS risk. Because RAC2 has been reported to mediate some of the pleiotropic effects of statins, we suggest that statins may reduce MS risk through a cholesterol-independent pathway (that is, RAC2-related mechanism(s)). MR analyses also support a causal effect of HDL-C on MS risk.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Esclerose Múltipla , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , LDL-Colesterol , Triglicerídeos , Análise da Randomização Mendeliana , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Colesterol , HDL-Colesterol , Proteínas rho de Ligação ao GTP/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
5.
medRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645746

RESUMO

The direct causes of neurodegeneration underlying Alzheimer's disease (AD) and many other dementias, are not known. Here we identify serum amyloid P component (SAP), a constitutive plasma protein normally excluded from the brain, as a potential drug target. After meta-analysis of three genome-wide association studies, comprising 44,288 participants, cis-Mendelian randomization showed that genes responsible for higher plasma SAP values are significantly associated with AD, Lewy body dementia and plasma tau concentration. These genetic findings are consistent with experimental evidence of SAP neurotoxicity and the strong, independent association of neocortex SAP content with dementia at death. Depletion of SAP from the blood and from the brain, as is provided by the safe, well tolerated, experimental drug, miridesap, may therefore contribute to treatment of neurodegeneration.

6.
Nat Genet ; 55(6): 964-972, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37248441

RESUMO

Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Doenças Vasculares , Humanos , Feminino , Estudo de Associação Genômica Ampla , Doenças Vasculares/genética , Doença da Artéria Coronariana/genética
7.
Sci Adv ; 9(17): eadd4984, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126556

RESUMO

Dysfunction of either the right or left ventricle can lead to heart failure (HF) and subsequent morbidity and mortality. We performed a genome-wide association study (GWAS) of 16 cardiac magnetic resonance (CMR) imaging measurements of biventricular function and structure. Cis-Mendelian randomization (MR) was used to identify plasma proteins associating with CMR traits as well as with any of the following cardiac outcomes: HF, non-ischemic cardiomyopathy, dilated cardiomyopathy (DCM), atrial fibrillation, or coronary heart disease. In total, 33 plasma proteins were prioritized, including repurposing candidates for DCM and/or HF: IL18R (providing indirect evidence for IL18), I17RA, GPC5, LAMC2, PA2GA, CD33, and SLAF7. In addition, 13 of the 25 druggable proteins (52%; 95% confidence interval, 0.31 to 0.72) could be mapped to compounds with known oncological indications or side effects. These findings provide leads to facilitate drug development for cardiac disease and suggest that cardiotoxicities of several cancer treatments might represent mechanism-based adverse effects.


Assuntos
Fibrilação Atrial , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Neoplasias , Humanos , Cardiotoxicidade , Estudo de Associação Genômica Ampla , Glipicanas
8.
Res Sq ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778476

RESUMO

Background: drug development and disease prevention of heart failure (HF) and atrial fibrillation (AF) are impeded by a lack of robust early-stage surrogates. We determined to what extent cardiac magnetic resonance (CMR) measurements act as surrogates for the development of HF or AF in healthy individuals. Methods: Genetic data was sourced on the association with 22 atrial and ventricular CMR measurements. Mendelian randomization was used to determine CMR associations with atrial fibrillation (AF), heart failure (HF), non-ischemic cardiomyopathy (CMP), and dilated cardiomyopathy (DCM). Additionally, for the CMR surrogates of AF and HF, we explored their association with non-cardiac traits. Results: In total we found that 9 CMR measures were associated with the development of HF, 7 with development of non-ischemic CMR, 6 with DCM, and 12 with AF. biventricular ejection fraction (EF), biventricular or end-systolic volumes (ESV) and left-ventricular (LV) end diastolic volume (EDV) were associated with all 4 cardiac outcomes. Increased LV-MVR (mass to volume ratio) affected HF (odds ratio (OR) 0.83, 95%CI 0.79; 0.88), and DCM (OR 0.26, 95%CI 0.20; 0.34. We were able to identify 9 CMR surrogates for HF and/or AF (including LV-MVR, biventricular EDV, ESV, and right-ventricular EF) which associated with non-cardiac traits such as blood pressure, lung function traits, BMI, cardioembolic stroke, and late-onset Alzheimer's disease. Conclusion: CMR measurements may act as surrogate endpoints for the development of HF (including non-ischemic CMP and DCM) or AF. Additionally, we show that changes in cardiac function and structure measured through CMR, may affect diseases of other organs leading to lung disease or late-onset Alzheimer's disease.

9.
Commun Med (Lond) ; 3(1): 9, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670186

RESUMO

BACKGROUND: Higher concentrations of cholesterol-containing low-density lipoprotein (LDL-C) increase the risk of cardiovascular disease (CVD). The association of LDL-C with non-CVD traits remains unclear, as are the possible independent contributions of other cholesterol-containing lipoproteins and apolipoproteins. METHODS: Nuclear magnetic resonance spectroscopy was used to measure the cholesterol content of high density (HDL-C), very low-density (VLDL-C), intermediate-density (IDL-C), as well as low-density lipoprotein fractions, the apolipoproteins Apo-A1 and Apo-B, as well as total triglycerides (TG), remnant-cholesterol (Rem-Chol) and total cholesterol (TC). The causal effects of these exposures were assessed against 33 outcomes using univariable and multivariable Mendelian randomization (MR). RESULTS: The majority of cholesterol containing lipoproteins and apolipoproteins affect coronary heart disease (CHD), carotid intima-media thickness, carotid plaque, C-reactive protein (CRP) and blood pressure. Multivariable MR indicated that many of these effects act independently of HDL-C, LDL-C and TG, the most frequently measured lipid fractions. Higher concentrations of TG, VLDL-C, Rem-Chol and Apo-B increased heart failure (HF) risk; often independently of LDL-C, HDL-C or TG. Finally, a subset of these exposures associated with non-CVD traits such as Alzheimer's disease (AD: HDL-C, LDL-C, IDL-C, Apo-B), type 2 diabetes (T2DM: VLDL-C, IDL-C, LDL-C), and inflammatory bowel disease (IBD: LDL-C, IDL-C). CONCLUSIONS: The cholesterol content of a wide range of lipoprotein and apolipoproteins associate with measures of atherosclerosis, blood pressure, CRP, and CHD, with a subset affecting HF, T2DM, AD and IBD risk. Many of the observed effects appear to act independently of LDL-C, HDL-C, and TG, supporting the targeting of lipid fractions beyond LDL-C for disease prevention.


It is known that increases in the amount of certain fats and proteins in the blood can lead to heart attacks. These increases are also found in people with other diseases. Here, we looked at inherited differences in some fats and proteins in blood to explore whether these could be associated with various diseases. We found that some fats and proteins in blood were associated with heart disease (including heart failure), blood pressure, blockages in blood vessels, and to a lesser extent with diabetes, Alzheimer's disease, and inflammatory bowel disease. These findings suggest that changes to lipids and proteins in the blood might lead to various diseases, including some that are not normally associated with changes in the blood. Monitoring these changes could improve diagnosis and treatment of these diseases.

10.
JAMA Cardiol ; 7(9): 955-964, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921096

RESUMO

Importance: Cholesteryl ester transfer protein inhibition (CETP) has been shown to increase levels of high-density lipoprotein cholesterol (HDL-C) and reduce levels of low-density lipoprotein cholesterol (LDL-C). Current LDL-C target attainment is low, and novel phase 3 trials are underway to investigate whether CETP inhibitors result in reduction of cardiovascular disease risk in high-risk patients who may be treated with PCSK9-inhibiting agents. Objective: To explore the associations of combined reduction of CETP and PCSK9 concentrations with risk of coronary artery disease (CAD) and other clinical and safety outcomes. Design, Setting, and Participants: Two-sample 2 × 2 factorial Mendelian randomization study in a general population sample that includes data for UK Biobank participants of European ancestry. Exposures: Separate genetic scores were constructed for CETP and PCSK9 plasma protein concentrations, which were combined to determine the associations of combined genetically reduced CETP and PCSK9 concentrations with disease. Main Outcomes and Measures: Blood lipid and lipoprotein concentrations, blood pressure, CAD, age-related macular degeneration, type 2 diabetes, any stroke and ischemic stroke, Alzheimer disease, vascular dementia, heart failure, atrial fibrillation, chronic kidney disease, asthma, and multiple sclerosis. Results: Data for 425 354 UKB participants were included; the median (IQR) age was 59 years (51-64), and 229 399 (53.9%) were female. The associations of lower CETP and lower PCSK9 concentrations with CAD are similar when scaled per 10-mg/dL reduction in LDL-C concentrations (CETP: odds ratio [OR], 0.74; 95% CI, 0.67 to 0.81; PCSK9: OR, 0.75; 95% CI, 0.71 to 0.79). Combined exposure to lower CETP and PCSK9 concentrations was associated with an additive magnitude with lipids and all outcomes, and we did not observe any nonadditive interactions, most notably for LDL-C (CETP: effect size, -1.11 mg/dL; 95% CI, -1.40 to -0.82; PCSK9: effect size, -2.13 mg/dL; 95% CI, -2.43 to -1.84; combined: effect size, -3.47 mg/dL; 95% CI, -3.76 to -3.18; P = .34 for interaction) and CAD (CETP: OR, 0.96; 95% CI, 0.94 to 1.00; PCSK9: OR, 0.94; 95% CI, 0.91 to 0.97; combined: OR, 0.90; 95% CI, 0.87 to 0.93; P = .83 for interaction). In addition, when corrected for multiple testing, lower CETP concentrations were associated with increased age-related macular degeneration (OR, 1.11; 95% CI, 1.04 to 1.19). Conclusions and Relevance: Our results suggest that joint inhibition of CETP and PCSK9 has additive effects on lipid traits and disease risk, including a lower risk of CAD. Further research may explore whether a combination of CETP- and PCSK9-related therapeutics can benefit high-risk patients who are unable to reach treatment targets with existing options.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Degeneração Macular , Proteínas de Transferência de Ésteres de Colesterol/genética , LDL-Colesterol/sangue , Doença da Artéria Coronariana/genética , Feminino , Variação Genética , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
11.
BMC Med ; 20(1): 201, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35650572

RESUMO

BACKGROUND: Muscle weakness, which increases in prevalence with age, is a major public health concern. Grip strength is commonly used to identify weakness and an improved understanding of its determinants is required. We aimed to investigate if total and central adiposity are causally associated with grip strength. METHODS: Up to 470,786 UK Biobank participants, aged 38-73 years, with baseline data on four adiposity indicators (body mass index (BMI), body fat percentage (BF%), waist circumference (WC) and waist-hip-ratio (WHR)) and maximum grip strength were included. We examined sex-specific associations between each adiposity indicator and grip strength. We explored whether associations varied by age, by examining age-stratified associations (< 50 years, 50-59 years, 60-64 years,65 years +). Using Mendelian randomisation (MR), we estimated the strength of the adiposity-grip strength associations using genetic instruments for each adiposity trait as our exposure. RESULTS: In males, observed and MR associations were generally consistent: higher BMI and WC were associated with stronger grip; higher BF% and WHR were associated with weaker grip: 1-SD higher BMI was associated with 0.49 kg (95% CI: 0.45 kg, 0.53 kg) stronger grip; 1-SD higher WHR was associated with 0.45 kg (95% CI:0.41 kg, 0.48 kg) weaker grip (covariate adjusted observational analyses). Associations of BMI and WC with grip strength were weaker at older ages: in males aged < 50 years and 65 years + , 1-SD higher BMI was associated with 0.93 kg (95% CI: 0.84 kg, 1.01 kg) and 0.13 kg (95% CI: 0.05 kg, 0.21 kg) stronger grip, respectively. In females, higher BF% was associated with weaker grip and higher WC was associated with stronger grip; other associations were inconsistent. CONCLUSIONS: Using different methods to triangulate evidence, our findings suggest causal links between adiposity and grip strength. Specifically, higher BF% (in both sexes) and WHR (males only) were associated with weaker grip strength.


Assuntos
Adiposidade , Bancos de Espécimes Biológicos , Adiposidade/genética , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade , Reino Unido/epidemiologia , Circunferência da Cintura
12.
Front Genet ; 13: 845498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432461

RESUMO

Background: Monogenic familial hypercholesterolaemia (FH) is an autosomal dominant disorder characterised by elevated low-density lipoprotein cholesterol (LDL-C) concentrations due to monogenic mutations in LDLR, APOB, PCSK9, and APOE. Some mutation-negative patients have a polygenic cause for elevated LDL-C due to a burden of common LDL-C-raising alleles, as demonstrated in people of White British (WB) ancestry using a 12-single nucleotide polymorphism (SNP) score. This score has yet to be evaluated in people of South Asian (SA), and Black and Caribbean (BC) ethnicities. Objectives: 1) Compare the LDL-C and 12-SNP score distributions across the three major ethnic groups in the United Kingdom: WB, SA, and BC individuals; 2) compare the association of the 12-SNP score with LDL-C in these groups; 3) evaluate ethnicity-specific and WB 12-SNP score decile cut-off values, applied to SA and BC ethnicities, in predicting LDL-C concentrations and hypercholesterolaemia (LDL-C>4.9 mmol/L). Methods: The United Kingdom Biobank cohort was used to analyse the LDL-C (adjusted for statin use) and 12-SNP score distributions in self-reported WB (n = 353,166), SA (n = 7,016), and BC (n = 7,082) participants. To evaluate WB and ethnicity-specific 12-SNP score deciles, the total dataset was split 50:50 into a training and testing dataset. Regression analyses (logistic and linear) were used to analyse hypercholesterolaemia (LDL-C>4.9 mmol/L) and LDL-C. Findings: The mean (±SD) measured LDL-C differed significantly between the ethnic groups and was highest in WB [3.73 (±0.85) mmol/L], followed by SA [3.57 (±0.86) mmol/L, p < 2.2 × 10-16], and BC [3.42 (±0.90) mmol/L] participants (p < 2.2 × 10-16). There were significant differences in the mean (±SD) 12-SNP score between WB [0.90 (±0.23)] and BC [0.72 (±0.25), p < 2.2 × 10-16], and WB and SA participants [0.86 (±0.19), p < 2.2 × 10-16]. In all three ethnic groups the 12-SNP score was associated with measured LDL-C [R 2 (95% CI): WB = 0.067 (0.065-0.069), BC = 0.080 (0.063-0.097), SA = 0.027 (0.016-0.038)]. The odds ratio and the area under the curve for hypercholesterolaemia were not statistically different when applying ethnicity-specific or WB deciles in all ethnic groups. Interpretation: We provide information on the differences in LDL-C and the 12-SNP score distributions in self-reported WB, SA, and BC individuals of the United Kingdom Biobank. We report the association between the 12-SNP score and LDL-C in these ethnic groups. We evaluate the performance of ethnicity-specific and WB 12-SNP score deciles in predicting LDL-C and hypercholesterolaemia.

13.
Circulation ; 145(16): 1205-1217, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35300523

RESUMO

BACKGROUND: Heart failure (HF) is a highly prevalent disorder for which disease mechanisms are incompletely understood. The discovery of disease-associated proteins with causal genetic evidence provides an opportunity to identify new therapeutic targets. METHODS: We investigated the observational and causal associations of 90 cardiovascular proteins, which were measured using affinity-based proteomic assays. First, we estimated the associations of 90 cardiovascular proteins with incident heart failure by means of a fixed-effect meta-analysis of 4 population-based studies, composed of a total of 3019 participants with 732 HF events. The causal effects of HF-associated proteins were then investigated by Mendelian randomization, using cis-protein quantitative loci genetic instruments identified from genomewide association studies in more than 30 000 individuals. To improve the precision of causal estimates, we implemented an Mendelian randomization model that accounted for linkage disequilibrium between instruments and tested the robustness of causal estimates through a multiverse sensitivity analysis that included up to 120 combinations of instrument selection parameters and Mendelian randomization models per protein. The druggability of candidate proteins was surveyed, and mechanism of action and potential on-target side effects were explored with cross-trait Mendelian randomization analysis. RESULTS: Forty-four of ninety proteins were positively associated with risk of incident HF (P<6.0×10-4). Among these, 8 proteins had evidence of a causal association with HF that was robust to multiverse sensitivity analysis: higher CSF-1 (macrophage colony-stimulating factor 1), Gal-3 (galectin-3) and KIM-1 (kidney injury molecule 1) were positively associated with risk of HF, whereas higher ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CTSL1 (cathepsin L1), FGF-23 (fibroblast growth factor 23), and MMP-12 (matrix metalloproteinase-12) were protective. Therapeutics targeting ADM and Gal-3 are currently under evaluation in clinical trials, and all the remaining proteins were considered druggable, except KIM-1. CONCLUSIONS: We identified 44 circulating proteins that were associated with incident HF, of which 8 showed evidence of a causal relationship and 7 were druggable, including adrenomedullin, which represents a particularly promising drug target. Our approach demonstrates a tractable roadmap for the triangulation of population genomic and proteomic data for the prioritization of therapeutic targets for complex human diseases.


Assuntos
Adrenomedulina , Insuficiência Cardíaca , Adrenomedulina/genética , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/genética , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Proteômica
14.
Artigo em Inglês | MEDLINE | ID: mdl-34649961

RESUMO

Insights into the genetic basis of human disease are helping to address some of the key challenges in new drug development including the very high rates of failure. Here we review the recent history of an emerging, genomics-assisted approach to pharmaceutical research and development, and its relationship to Mendelian randomization (MR), a well-established analytical approach to causal inference. We demonstrate how human genomic data linked to pharmaceutically relevant phenotypes can be used for (1) drug target identification (mapping relevant drug targets to diseases), (2) drug target validation (inferring the likely effects of drug target perturbation), (3) evaluation of the effectiveness and specificity of compound-target engagement (inferring the extent to which the effects of a compound are exclusive to the target and distinguishing between on-target and off-target compound effects), and (4) the selection of end points in clinical trials (the diseases or conditions to be evaluated as trial outcomes). We show how genomics can help identify indication expansion opportunities for licensed drugs and repurposing of compounds developed to clinical phase that proved safe but ineffective for the original intended indication. We outline statistical and biological considerations in using MR for drug target validation (drug target MR) and discuss the obstacles and challenges for scaled applications of these genomics-based approaches.


Assuntos
Desenvolvimento de Medicamentos , Genômica , Genoma Humano , Humanos , Fenótipo
15.
Nat Commun ; 12(1): 7342, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930919

RESUMO

Parkinson's disease is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation. We use Mendelian randomization to investigate over 3,000 genes that encode druggable proteins and predict their efficacy as drug targets for Parkinson's disease. We use expression and protein quantitative trait loci to mimic exposure to medications, and we examine the causal effect on Parkinson's disease risk (in two large cohorts), age at onset and progression. We propose 23 drug-targeting mechanisms for Parkinson's disease, including four possible drug repurposing opportunities and two drugs which may increase Parkinson's disease risk. Of these, we put forward six drug targets with the strongest Mendelian randomization evidence. There is remarkably little overlap between our drug targets to reduce Parkinson's disease risk versus progression, suggesting different molecular mechanisms. Drugs with genetic support are considerably more likely to succeed in clinical trials, and we provide compelling genetic evidence and an analysis pipeline to prioritise Parkinson's disease drug development.


Assuntos
Genoma Humano , Análise da Randomização Mendeliana , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Humanos , Doença de Parkinson/sangue , Locos de Características Quantitativas/genética , Fatores de Risco
16.
Genes (Basel) ; 12(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34828364

RESUMO

CYP2D6 and CYP2C19 enzymes are essential in the metabolism of antidepressants and antipsychotics. Genetic variation in these genes may increase risk of adverse drug reactions. Antidepressants and antipsychotics have previously been associated with risk of diabetes. We examined whether individual genetic differences in CYP2D6 and CYP2C19 contribute to these effects. We identified 31,579 individuals taking antidepressants and 2699 taking antipsychotics within UK Biobank. Participants were classified as poor, intermediate, or normal metabolizers of CYP2D6, and as poor, intermediate, normal, rapid, or ultra-rapid metabolizers of CYP2C19. Risk of diabetes mellitus represented by HbA1c level was examined in relation to the metabolic phenotypes. CYP2D6 poor metabolizers taking paroxetine had higher Hb1Ac than normal metabolizers (mean difference: 2.29 mmol/mol; p < 0.001). Among participants with diabetes who were taking venlafaxine, CYP2D6 poor metabolizers had higher HbA1c levels compared to normal metabolizers (mean differences: 10.15 mmol/mol; p < 0.001. Among participants with diabetes who were taking fluoxetine, CYP2D6 intermediate metabolizers and decreased HbA1c, compared to normal metabolizers (mean difference -7.74 mmol/mol; p = 0.017). We did not observe any relationship between CYP2D6 or CYP2C19 metabolic status and HbA1c levels in participants taking antipsychotic medication. Our results indicate that the impact of genetic variation in CYP2D6 differs depending on diabetes status. Although our findings support existing clinical guidelines, further research is essential to inform pharmacogenetic testing for people taking antidepressants and antipsychotics.


Assuntos
Antidepressivos/efeitos adversos , Antipsicóticos/efeitos adversos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Diabetes Mellitus/metabolismo , Hemoglobinas Glicadas/metabolismo , Adulto , Idoso , Bancos de Espécimes Biológicos , Diabetes Mellitus/etiologia , Diabetes Mellitus/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Medicina de Precisão , Medição de Risco , Reino Unido
17.
Nat Commun ; 12(1): 6120, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675202

RESUMO

Drug target Mendelian randomization (MR) studies use DNA sequence variants in or near a gene encoding a drug target, that alter the target's expression or function, as a tool to anticipate the effect of drug action on the same target. Here we apply MR to prioritize drug targets for their causal relevance for coronary heart disease (CHD). The targets are further prioritized using independent replication, co-localization, protein expression profiles and data from the British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through their association with blood lipids (HDL-C, LDL-C and triglycerides), we robustly prioritize 30 targets that might elicit beneficial effects in the prevention or treatment of CHD, including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. We discuss how this approach can be generalized to other targets, disease biomarkers and endpoints to help prioritize and validate targets during the drug development process.


Assuntos
Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/genética , Análise da Randomização Mendeliana , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Doença das Coronárias/sangue , Humanos , Proteínas de Membrana Transportadoras/genética , Pró-Proteína Convertase 9/genética , Triglicerídeos/sangue
18.
Nat Commun ; 12(1): 5640, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561430

RESUMO

Development of cholesteryl ester transfer protein (CETP) inhibitors for coronary heart disease (CHD) has yet to deliver licensed medicines. To distinguish compound from drug target failure, we compared evidence from clinical trials and drug target Mendelian randomization of CETP protein concentration, comparing this to Mendelian randomization of proprotein convertase subtilisin/kexin type 9 (PCSK9). We show that previous failures of CETP inhibitors are likely compound related, as illustrated by significant degrees of between-compound heterogeneity in effects on lipids, blood pressure, and clinical outcomes observed in trials. On-target CETP inhibition, assessed through Mendelian randomization, is expected to reduce the risk of CHD, heart failure, diabetes, and chronic kidney disease, while increasing the risk of age-related macular degeneration. In contrast, lower PCSK9 concentration is anticipated to decrease the risk of CHD, heart failure, atrial fibrillation, chronic kidney disease, multiple sclerosis, and stroke, while potentially increasing the risk of Alzheimer's disease and asthma. Due to distinct effects on lipoprotein metabolite profiles, joint inhibition of CETP and PCSK9 may provide added benefit. In conclusion, we provide genetic evidence that CETP is an effective target for CHD prevention but with a potential on-target adverse effect on age-related macular degeneration.


Assuntos
Anticolesterolemiantes/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Doença das Coronárias/prevenção & controle , Amidas/uso terapêutico , Benzodiazepinas/uso terapêutico , Doenças Cardiovasculares/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Doença das Coronárias/metabolismo , Ésteres/uso terapêutico , Humanos , Análise da Randomização Mendeliana , Oxazolidinonas/uso terapêutico , Quinolinas/uso terapêutico , Compostos de Sulfidrila/uso terapêutico
19.
ESC Heart Fail ; 8(6): 5531-5541, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480422

RESUMO

AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10-8 under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Idoso , Idoso de 80 Anos ou mais , Feminino , Genômica , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
20.
Front Genet ; 12: 569323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679875

RESUMO

BACKGROUND: Reduced heart rate (HR) increase (HRI), recovery (HRR), and higher resting HR are associated with cardiovascular (CV) disease, but causal inferences have not been deduced. We investigated causal effects of HRI, HRR, and resting HR on CV risk, all-cause mortality (ACM), atrial fibrillation (AF), coronary artery disease (CAD), and ischemic stroke (IS) using Mendelian Randomization. METHODS: 11 variants for HRI, 11 for HRR, and two sets of 46 and 414 variants for resting HR were obtained from four genome-wide association studies (GWASs) on UK Biobank. We performed a lookup on GWASs for CV risk and ACM in UK Biobank (N = 375,367, 5.4% cases and N = 393,165, 4.4% cases, respectively). For CAD, AF, and IS, we used publicly available summary statistics. We used a random-effects inverse-variance weighted (IVW) method and sensitivity analyses to estimate causality. RESULTS: IVW showed a nominally significant effect of HRI on CV events (odds ratio [OR] = 1.0012, P = 4.11 × 10-2) and on CAD and AF. Regarding HRR, IVW was not significant for any outcome. The IVW method indicated statistically significant associations of resting HR with AF (OR = 0.9825, P = 9.8 × 10-6), supported by all sensitivity analyses, and a nominally significant association with IS (OR = 0.9926, P = 9.82 × 10-3). CONCLUSION: Our findings suggest no strong evidence of an association between HRI and HRR and any outcome and confirm prior work reporting a highly significant effect of resting HR on AF. Future research is required to explore HRI and HRR associations further using more powerful predictors, when available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...